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Abstract 

Each year hurricanes cause extensive economic loss and social disruption all around the 
world. Annual hurricane economic loss in the United States has been $10 billion in recent 
years. Various hurricane wind field models have been proposed, and hurricane loss has 
been estimated based on these models. However, spatially correlated wind fields have not 
been considered yet. This paper examines spatial correlation in hurricane wind fields. In 
this paper, we describe the spatial correlation structure of hurricane wind fields and 
introduce the calculation of the spatial correlation using software R. The spatial 
correlation of wind fields is obtained by computing the semivariance of the standardized 
wind speed residuals between observed data from Real-time Hurricane Wind Analysis 
System (H*wind) and wind field model data. We consider the Exponential and Gaussian 
semivariogram models to fit the empirical semivariogram. As an illustrative example, the 
data from Hurricane Ivan (2004) is used to quantify the spatial correlations in wind field. 
Our analysis qualitatively determines the spatial correlation in the hurricane wind fields.  
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Introduction 

Hurricanes responsible for approximate $10 billion USD economic loss each year in the 
United States (Pielke et al. 2005). Damages due to hurricanes are usually caused by the 
direct effects of hurricane induced strong winds. Various hurricane wind field models 
(Batts et al. 1980; Georgiou 1985; Vickery and Twisdale 1995; Vickery et al. 2000) have 
been developed over the years to model the spatial distribution of hurricane wind speeds. 
Most of these existing hurricane wind field models are deterministic and the modeling 
errors in the wind fields are not considered in these models. Uncertainty in hurricane 
wind fields is important for damage risk assessment and needs to be properly identified 
and included (Li and Ellinwood 2006). Risk assessment of spatially distributed systems 
such as networks of lifelines and portfolios of buildings require the modeling of hurricane 
wind hazard as a matrix of spatially distributed correlated wind speeds. In this paper, a 
methodology to quantify the spatial correlation of wind speed uncertainties of hurricane 
wind field model is introduced.  As an illustrative example, the wind speed data from 
Hurricane Ivan (2004) is used to quantify the spatial correlations of a wind field model. 

Hurricane Wind Fields Model 

In this paper, the Georgiou (1985) wind field model is used to estimate the wind speeds. 
In order to compute the gradient wind speed (V ), seven modeling parameters are 
required: the latitude, longitude, translational speed ( TV ), heading angle (θ ), central 
pressure ( cP ), radius from hurricane eye to maximum wind location ( maxR ), and air 
pressure profile parameter ( B ). 

The gradient wind speed (V ) at a point of interest ( ,r α ) can be computed using the 
following equation (Georgiou 1985): 
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where a cP P−  is central peripheral pressure, aρ  is the air density, r  is the distance from 
the hurricane eye to the location of interest, and α  is the angle between the location and 
the hurricane heading direction (counter-clockwise is positive). 2 sinf φ= Ω  is the 
Coriolis parameter in which Ω  is the angular rotation rate of the earth (7.272×10-5 rad/s) 
and φ  is the latitude at the location.  

Figure 1 displays parameters in the wind field model and the track of Hurricane Ivan 
(2004) as it was making landfall in Alabama.  
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Figure 1: Hurricane Ivan (2004) track and gradient wind field model. 

The error of a wind field model at the ith location is defined as: 

i i ie V V= −  , 

where iV  is the observed wind speed (i.e. H*wind) and iV  is the estimated surface wind 

speed (i.e. iV F⋅ ) at the ith location. The gradient-to-surface conversion factors ( F ) 
developed by Sparks and Huang (1999) are used to convert the gradient wind speed at the 
top of the boundary layer to the 10-m surface wind speed.  

 

Spatial Correlation Methodology 

In the real world, observations at different locations may not be independent. 
Measurements at nearby locations may be closer in value than those at locations farther 
apart. This phenomenon is called spatial correlation. Spatial correlation is the correlation 
of a variable with itself through space. In hurricane wind fields, we expect that the spatial 
correlation of observations at different locations is strong and positive when the locations 
are close, but it towards to zero as the locations are far away.  

In theoretical geostatistics, the spatial correlation structure can be calculated through the 
semivariogram, which provides a measure of variance of the difference between 
observations at two locations across realizations of the field (Cressie 1993). Let lu  and 

'lu  denote observations at two locations l and 'l , respectively. In spatial statistics, the 
theoretical semivariogram ( , ')l lγ  is defined as 
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In Appendix, we show the empirical stationary semivariogram from data: 
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where hN  denotes the number of location pairs ( , ')l l   with a distance 'h l l= − . The 
empirical semivariogram for a particular distance is calculated by averaging one half of 
the difference squared of the values over all pairs of observations separated by the same 
distance. It is unlikely that actual location pairs would exactly have the distance h . So 
we consider a range of distances [ , ]h hδ δ− +  to modify hN  and calculate ˆ( )hγ . 

In applied geostatistics, the empirical semivariogram is often approximated by 
semivariogram models (Chiles and Delfiner 1999). There have been many positive 
definite semivariogram models proposed. Two important models are (Chiles and Delfiner 
1999, Cressie 1993): 

(1) Exponential model:  

( / )
0 1ˆ( ) 1 h ah c c eγ − = + −  , 

 where 0c  denotes nugget effect, 1c  denotes the partial still of the semivariogram, which 
is the variance of the observations, and a  denotes the effective range (Duetsch and 
Journel 1992), which is the distance at which  achieves 95% of the still, ( 0 1c c+ ). 

(2) Gaussian model: 

2 2( / )
0 1ˆ( ) 1 e h ah c cγ − = + −  . 

Assume that the nugget effect 0 0c = , that is, the geological microstructure and 
measurement errors are ignored. The semivariogram is always 0 at distance 0h = . 

The theoretical spatial correlation ρ can be estimated as 1ˆ (̂ ) 1 ( )h h cρ γ= − . Typically, 
the spatial correlation decreases as the distance h  between the locations increases. 

The spatial correlation structure in this paper refers to the correlation structure of the 
residuals in the wind field model. We explore the correlation structure of residuals at 
spatially distributed locations. 

Results and Discussions 

The observed wind speed data are from Real-time Hurricane Wind Analysis System 
(H*wind) (Powell et al. 1998). The spatial correlation is estimated based on the wind 
field records of Hurricane Ivan on September 16, 2004 at 1200 UTC time. To simplify 
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the computation, let i
i

ee
σ

= , where σ  is the standard deviation of the residual. Then the 

variance of ie  is 1. We only show the results of 400 randomly selected locations in this 
paper. Figure 2 shows the distribution of errors ie  at 400 locations. 

 

Figure 2. Distribution of errors ie  at 400 randomly selected locations. The x-axis denotes the 
distance between the location and the wind eye. 

The software R ( http://www.r-project.org/ ) is free to public. The package geoR in the 
software R provides geostatistical analysis on spatially distributed data (Diggle and 
Ribeiro, 2007; Ribeiro and Diggle, 2001). The command plot(geodata) gives distribution 
of the 400 locations and the errors ie  (Figure 3). The left-top panel displays the 
distribution of locations. The minimum distance between two locations is 6km. Different 
colors represent the different values of errors. The right-top and the left-bottom panels 
display the data errors versus coordinates in terms of longitudes and latitudes, 
respectively. The right-bottom panel is the histogram of errors.  

Section on Physical and Engineering Sciences – JSM 2012

2237



 
Figure 3. Distribution of the 400 locations and the data errors. 

The function variog is used to estimate the empirical semivariogram. It accepts a large 
number of arguments. Since the correlation of errors becomes small and towards to 0 as 
the distance between two locations is large, the locations with distance greater than 
200km are ignored. The command v = variog( geodata, max.dist=1.8, breaks=seq(0, 1.8, 
l=11) ) returns the semivariogram of errors and the corresponding range of distance 
between different locations (Table 1). The argument max.dist specifies the maximum 
distance used in constructing the semivariogram. The argument breaks specifies the 
endpoints of the intervals of distances. 

 

Semivariogram Range of distance (km) Correlation ρ  

0.1527481          0.00~19.93 0.84725194 

0.1842556         19.93~39.85 0.81574442 

0.2776118         39.85~59.78 0.72238823 

0.3381029         59.78~79.70 0.66189713 

0.5674614         79.70~99.63 0.43253856 

0.5974252         99.63~119.56 0.40257475 

0.6826387        119.56~139.48 0.31736127 

0.7703401        139.48~159.41 0.22965992 

0.8637183        159.41~179.34 0.13628167 

0.9880528        179.34~200.00 0.01194723 

Table 1. Semivariogram, range of distance between different locations, and spatial correlation of 
errors. 
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The correlation ρ  can be obtained based on the empirical semivariogram in Table 1. A 
large distance between two locations corresponds to a large semivariogram (Figure 4), 
and subsequently a small correlation. 

 
Figure 4. Empirical semivariogram plot. 

In practice, the parameters of semivariogram, such as effective range a , are unknown. 
We use the Exponential and Gaussian semivariogram models to fit the empirical 
semivariogram. In this paper, the Weighted Least Squares (WLS) is used to obtain the 
estimates of parameters. In the package geoR, the function variofit can estimate the 
parameters. Since the nugget effect 0 0c =  and partial still 1 1c = , we only need to 
estimate the effective range a . The following commands give us the estimated effective 
range by WLS under the Exponential and Gaussian semivariogram models. 

wlsexp = variofit( v, ini=c(1,1), cov.model="exp", fix.nugget=TRUE ) 

wlsgaus = variofit( v, ini=c(1,1), cov.model="gaus", fix.nugget=TRUE ) 

The argument ini specifies the initial values of parameters 1c  and a . The argument 
cov.model specifies the semivariogram model. The argument fix.nugget=TRUE specifies 
the nugget effect is fixed to 0. We can also use the argument pars.limits to give limits of 
parameters. The effective ranges under the Exponential and Gaussian models are 103km 
and 110km, respectively. Figure 5 shows the plot of fitted models against the empirical 
semivariogram. 
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Figure 5. Plot of empirical semivariogram and two fitted semivariogram models: Exponential and 
Gaussian models. 

We investigate the variability of the empirical semivariogram over the Exponential and 
Gaussian semivariogram models through an envelope analysis. The function 
variog.mc.env computes the envelopes for empirical semivariograms by permutation. For 
each simulation, data 'ie s  are randomly allocated to the spatial locations. Then, the 
empirical semivariogram is computed using the same distance ranges as for the 
semivariogram originally computed for the data. The envelopes are calculated by taking 
the maximum and minimum semivariogram values from each distance range of the 
simulated data. The argument obj.var is typically an output of the function variog. The 
function variog.model.env computes the envelopes for a semivariogram by simulating 
data under a given model. The argument model specifies the parameters under a 
semivariogram model. The envelopes are computed under a semivariogram model. 
Simulated data values are generated at the spatial locations, given the model parameters. 
Then, in each simulation, the semivariogram is computed using the same distance ranges. 
The envelopes are the maximum and minimum values of the semivariogram of each 
distance range. For both functions, we can use the argument nsim to specify the number 
of simulations used to compute the envelopes. The default is 99. The commands as 
follow are used to calculate the envelope without spatial correlation assumption and the 
envelopes based on the Exponential and Gaussian semivariogram parameters. 

env = variog.mc.env( geodata, obj.var=v ) 

envexp = variog.model.env( geodata, obj.var=v, model=wlsexp ) 

envgaus = variog.model.env( geodata, obj.var=v, model=wlsgaus ) 
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Figure 6:  Envelopes of semivariogram models. 

The top panel of Figure 6 illustrates the empirical envelope for semivariogram under the 
assumption of no spatial correlation between two locations. It is based on the permutation 
over the spatial locations. It is obvious that there is spatial dependence as most empirical 
semivariogram points fall outside of the envelope. The middle panel shows the envelope 
based on simulations from Exponential semivariogram model. The envelope of 
Exponential semivariogram includes almost all points. The bottom panel displays the 
envelope based on simulations from Gaussian semivariogram model. The envelope of 
semivariogram under the Gaussian model contains most semivariogram points. Based on 
the analysis of semivariogram envelopes, the Exponential model with a range of 103km 
appears to be the best model based on these data. 

Recently, several hurricane wind field models have been proposed. However, the spatial 
correlation of wind fields has been underdeveloped in these models. Our preliminary 
analysis provides obvious evidence of spatial correlation in the hurricane wind fields. We 
highly suggest that the spatial correlation structure of wind fields should be considered 
when hurricane risk assessment of spatially distributed systems, such as networks of 
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lifelines and portfolios of buildings, is conducted. Our findings have implications for 
future risk analysis and loss estimation in wind fields. 

In the illustrative example, the observed hurricane wind fields for Hurricane Ivan 
(H*wind), we fit the empirical semivariogram with the Exponential and Gaussian 
models, because they are commonly used continuous functions. Other permissible models 
can be utilized as well. One can also estimate model parameters using Maximum 
Likelihood (ML) or Ordinary Least Squares (OLS) methods.  

The analysis shows that spatial correlation exists under the wind field model and the 
Exponential semivariogram model fits the best of our data. Note that the Exponential 
model may not be the best choice for any wind field model. When different data is 
considered, one should fit the empirical semivariogram and construct the envelopes to 
determine the best model based on those data.  

A free software R is used to examine the spatial correlation structure of the hurricane 
wind fields. In this paper, we present how to use the package geoR to perform the 
examination of spatial correlation. Of course, other softwares such as Matlab can be 
considered as well. 
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Appendix: 

The theoretical semivariogram of two observations and two distinct locations is  
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Assume that the distance between locations l and 'l is 'h l l= − , and there are hN  
such location pairs, then  
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Thus, the empirical semivariogram based on the data is 
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