
Development of Fast, Slim and Accurate Amplicon Variant

Detection Algorithm for Next Generation Sequencing

Wei-min Liu
1
, Yan Li

1

1
Roche Molecular Systems, Inc., 4300 Hacienda Dr, Pleasanton, CA 94588

Abstract
Amplicon variant detection (AVD) is one of the important applications for next

generation sequencing (NGS). The enormous amount of sequencing data generated by

the NGS technology necessitates the development of fast, slim and accurate AVD

algorithm. Here, we present our approaches to develop and implement an AVD algorithm

with fast processing speed and efficient use of memory space. The hash function and

Burrows-Wheeler transformation are customized to speed up AVD so that processing the

large amount of sequencing reads can be completed in a relative short time. We also

propose a special way to compress the alignments of reads with reference sequences. Our

format uses significantly smaller memory space in comparison with some widely used

formats such as SAM/BAM. Moreover, it is useful to automatically identify whether the

newly found variants exist in a public database such as COSMIC. We also discuss

accuracy and other issues in evaluation of AVD algorithms for NGS.

Key Words: alignment, cancer, complex mutation, next generation sequencing,

NGS, sequencing

1. Introduction

The fast progress of the next generation sequencing (NGS) technology opens exciting

opportunities for clinical applications. The deep sequencing of target gene amplicons can

identify disease related mutations even if they appear in low proportions in specimens.

Since the amount of sequencing read data is large, development of fast and slim AVD

algorithm is required. Moreover, sequencing noises can occur in many steps, such as

contamination during sample preparation, improper primer design, infidelity of DNA

amplification, imperfect base calling algorithm, problematic alignment algorithm and

variant calling algorithm. In order to reduce sequencing noise, a common practice is to

apply various filters to remove low quality reads or suppress the report of unreliable

variants. In this paper, we remark on several approaches that can make AVD algorithm

fast and save memory space. This is especially important when we apply NGS in clinical

settings where reduced turn-around time means saving patients’ lives in certain

circumstances. We also discuss accuracy and other issues in evaluation of AVD

algorithms.

2. Amplicon Recognition

Amplicon recognition includes de-multiplexing and recognizing the target gene segments

based on the gene-specific primer sequences.

Biopharmaceutical Section – JSM 2012

373

To reduce costs or to compare various sample preparation methods, multiple samples are

usually included in one sequencing run. Specially designed short sequence segments are

attached to the sample sequences as their identifier. They are known as molecular

barcodes, or multiplex identifiers (MIDs, in 454 terminology), or indices (in Illumina

terminology). Due to sequencing errors, algorithms should allow small variations from

the designed barcode sequence.

A naïve implementation is to check all used barcodes for every read. Obviously, the

speed of this implementation is O(N), where N is the number of all used barcodes. A

better implementation is to use hash so that it can be done in constant time O(1) for reads

with exactly matching barcode. For reads without exactly matching barcode, slower

algorithm can be used. Since most reads have exactly matching barcode, it is worthwhile

to first try hashing and then a slower algorithm. However, if the length of barcode is

relatively long, e.g., 10 or more bases, then the hash table becomes large. For 10-base

barcodes, to avoid complex collision resolving function, one may use 4 ^ 10 = 1,048,576

buckets. In this case, we can consider cascade hash tables. For example, we can use two

hash tables, one for the first 5 bases and the other for the last 5 bases. In each table, a

non-empty entry is a linked list of barcode indices with the corresponding 5 bases. The

total number of required entries becomes 2 * 4 ^ 5 = 2,048. The barcode of a read is

recognized if the intersection of the entry in the first table and the entry in the second

table is not empty. The intersection can contain at most one barcode when the original

barcode list does not include replicate barcodes. The algorithm is still O(1) as long as not

many barcodes share the same first 5 bases or the same last 5 bases (which is true in real

applications).

When the number of samples is large, dual barcodes can be used. In some platforms, the

starting position of the ending barcode may not be certain due to sequencing errors in the

ending adaptor part. To take care of this situation, the Burrows-Wheeler transformation

(BWT, Burrows and Wheeler, 1994) can be used. To make the algorithm more efficient,

we can first make a conservative estimation of the ending part of the read that should

contain the ending barcode and then use the BWT only to the ending part.

Alignment of a read to a reference sequence is usually the bottle neck of speed for the

whole AVD algorithm. Therefore, it is helpful to first recognize the primers used in a

read, and then the algorithm only needs to align the read to a particular reference

sequence instead of every reference sequence. One may also first try a quick algorithm

that allows a small number of substitutions in primer part, and then try a more

complicated algorithm that allows a small indel in primer part.

3. Alignment and Variant Detection

To speed up alignment between a read and a reference sequence, we use an adaptive

banded semi-global algorithm. The semi-global alignment is described in Liu et al.

(2011). It can give different penalties to the ending indels, and use different initialization

methods to fit different purposes. The adaptive banded alignment first limits the

horizontal and vertical moves in the semi-global alignment in certain upper band and

lower band of the diagonal. If the edit distance of the alignment result is within the

predefined bands, the alignment is accepted. Otherwise, the alignment is repeated with

increased bands until the results are acceptable. We set the initial upper and lower bands

to 6, and the next levels are 12, 30, 60 and full size. Most reads can be successfully

Biopharmaceutical Section – JSM 2012

374

aligned when upper and lower bands are 6. This banded alignment significantly saves

time for the AVD algorithm.

After alignment, it is not difficult to get variant calls, counts and proportions for simple

mutations defined in Liu et al. (2011). We also implemented computation of the joint

counts and frequencies of complex mutations consisting of two or more simple

mutations. If all possible combinations of simple mutations are considered, the speed and

memory requirement will be impractical. We can first tally the simple mutations, find

those satisfying certain abundance condition and then use a hashing function to record the

complex mutations contained in a read and count their occurrences in all relevant reads.

The joint frequencies of complex mutations does not only generate the statistics of these

mutations, but also provide cases for further studying whether they represent alternative

targets instead of the originally designed targets.

4. Memory Saving Approaches

Liu et al. (2011) proposed the S3B format to record in information of 3 bases (allowing

ambiguous base N) with a byte. Here, we suggest a slim approach to record the alignment

results in AVD algorithm. SAM/BAM format is successfully used by many software

packages to record the alignment results. For deep sequencing of AVD, we can further

save the memory space required to store the alignment results. First, because of the depth,

we can save space by recording the reference sequence information only once for many

reads associated with the same reference sequence. Second, we can modify the compact

idiosyncratic gapped alignment report (CIGAR) format used by SAM/BAM to make it

even more compact. Since in AVD applications most frequent pairs in the alignment are

matches, it is helpful to record a run of matches more efficiently. We can use a byte pair

to record a run of matches of length 1 to 256. We can use 0 in the first byte to denote it as

a match (and use other byte code to denote substitutions and indels), and use the second

byte with value n in 0 to 255 to denote the run length (n + 1) in 1 to 256. If the run length

is larger than 256, we can use multiple byte pairs to denote this situation. For mutations,

we can use a non-zero byte to denote 12 possible substitutions, 4 possible insertions and 4

possible deletions. We may also use a byte pair to denote a run of deletions.

5. Usage of Databases

For clinical applications, it is helpful to verify whether a reported variant is a known

mutation in a disease-related database such as the Catalogue of Somatic Mutations in

Cancer (COSMIC). It is also useful to check the frequency of the mutation in relevant

tissue.

6. Algorithm Assessment

To reduce sequencing noise, AVD algorithms usually use filters to remove low quality

reads or suppress the report of unreliable variants. To assess an AVD algorithm

thoroughly, it is necessary to get the statistics of these filters. We provide comprehensive

reports of the filter status for every read and the filter statistics summary for all reads.

Alignment is a critical step in the AVD algorithm. It is important for an algorithm to

generate consistent results for the same variant. If an algorithm generates different

Biopharmaceutical Section – JSM 2012

375

alignments for the same variant, it will cause inaccurate computation of variant

frequency.

It is also important for an algorithm to report total counts, variant counts and frequencies

in both forward and reverse reads. Significantly unbalanced results in forward and

reverse reads may indicate unreliable results.

It may be useful to provide a quality score for the variant call.

Some algorithm put a limit of number of bases in reporting indels, and the user should be

aware of these restrictions and find ways to overcome these restrictions if necessary.

As pointed out in Liu et al. (2011), the concept of simple mutation including matching

bases at both ends of a mutation can help accurately report multi-base indels, e.g., a 15-

base deletion should not be reported as a 14-base or 12-base deletions.

The capability to report joint counts and frequencies of complex mutations consisting of

multiple simple mutations is also valuable. It is also important to identify whether some

reads may belong to an alternative target.

References

Burrows, M. and D. Wheeler (1994). A block sorting lossless data compression

algorithm. Technical Report 124. Digital Equipment Corporation

Liu, W., Y. Li,, Y. C. Tai, J. Tsai, M. Christensen, and W. Wen (2011). Notes on

algorithms for detection of amplicon variants in next-generation sequencing. In JSM

Proceedings. Alexandria, VA: American Statistical Association. 4268-4273.

Biopharmaceutical Section – JSM 2012

376

