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Abstract
An area-level model approach to combining information from several sources is considered

in the context of small area estimation. At each small area, several estimates are computed
and linked through a system of structural error models. The best linear unbiased predictor
of the small area parameters are computed by the general least squares method. Parameters
in the structural error models are estimated using the theory of measurement error models.
Estimation of mean squared errors is also discussed. The proposed method is applied to
the real problem of labor force survey in Korea.

Key Words: Area-level model; Auxiliary information; Measurement error models; Struc-
tural error model; Survey integration.

1. Introduction

Combining information from different source is an important problem in statistics.
In survey sampling, the source of information can come from a probability sampling
with direct measurement, from another probability sampling with indirect mea-
surement (such as self-reported health status), or from some auxiliary area-level
information. We consider an area-level model approach to small area estimation
when there are several source of auxiliary information. Pfeffermann (2002) and Rao
(2003) provided thorough reviews of methods used in small area estimation. Elliot
and Davis (2005) used dual-frame estimation methods to combine data from two
surveys for estimating cancer risk factors in small areas. Ybarra and Lohr (2008)
considered the small area estimation problem when the area-level auxiliary infor-
mation has some measurement errors. Merkouris (2010) discussed the small area
estimation by combining information from multiple surveys. Kim and Rao (2012)
considered a design-based approach to combining information from two independent
surveys.

To describe the setup, suppose that the finite population consists of H subpop-
ulations, denoted by U1, · · · , UH , and we are interested in estimating the subpop-
ulation totals Xh =

∑
i∈Uh

xi for area h. We assume that there is a survey that
measures xi from the sample but its sample size is not large enough to obtain es-
timates for Xh with reasonable accuracy. The main survey will be called survey
A and let X̂h,a denote a design-consistent estimator of Xh obtained from survey

A. Often, we compute X̂h,a =
∑

i∈Ah
wiaxi, where Ah is the set of sample A for

subpopulation h and wia is the weight of unit i in sample A.
In addition to the main survey, suppose that there is another survey, called

survey B, that measures an rough estimate for xit. Let y1i be the measurement
taken from survey B. We may assume that y1i is a rough measurement of xi with
some level of measurement error. Thus, we may assume

y1i = β0 + β1xi + e1i (1)
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for some (β0, β1), where e1i is a random variable that is distributed with mean zero
and variance σ2e1. The linear regression assumption or equal variance assumptions
can be relaxed later. If (β0, β1) = (0, 1), then model (1) means that there is no mea-
surement bias. From survey B, we can obtain another estimator Ŷ1h =

∑
i∈Bh

wiby1i,
where wib is the weight of unit i in the t-th survey for sample B and Bh is the set of
sample B for subpopulation h. Model (1) can be used to combine information from
the two surveys.

Finally, another source of information can be the Census information. Census
information does not suffer from coverage error or sampling error. But, it may have
measurement errors and it does not provide updated information for each month or
year. Let y2i be the measurement for unit i from the Census. The subpopulation
total Y2h =

∑
i∈Ch

y2i is available when Ch is the set of Census C for subpopulation
h.

Table 1 summarize the major source of information that we can consider into
small area estimation.

Table 1: Available information for small area estimation.

Data Observation Area level estimate Discussion

Survey A direct obs. (xi) X̂h, V̂ (X̂h) Sampling error (large)

Survey B aux. obs. (y1i) Ŷ1h, V̂ (Ŷ1h) Measurement error

Sampling error (small)

Census aux. obs. (y2i) Y2h Measurement error
No updated information

In this paper, we consider an area-level model approach for small area estima-
tion combining all available information. The proposed approach is based on the
measurement error models, where the sampling errors of the direct estimators are
treated as measurement errors, and all the other auxiliary information are com-
bined through a set of linking models. The proposed approach is applied to the real
problem of labor force survey in Korea.

The paper is organized as follows. In Section 2, the basic setup is introduced
and the small area estimation problem is viewed as a measurement error model
prediction problem. In Section 3, parameter estimation for the area level small area
model is discussed. In Section 4, mean square estimation is briefly discussed. In
Section 5, the proposed method is applied to the labor force survey data in Korea.
Concluding remarks are made in Section 6.

2. Basic Theory

In this section, we first introduce the basic theory for combining the information for
small area estimation. We first consider the simple case of combining two surveys.
Assume that there are two surveys, survey A and survey B, obtained from separate
probability sampling designs. The two surveys are not necessarily independent.
From survey A, we obtain a design unbiased estimator X̂h =

∑
i∈Ah

wiaxi and

its variance estimator V̂ (X̂h). From survey B, we obtain a design-model unbiased
estimator Ŷ1h =

∑
i∈Bh

wiby1i of Y1h =
∑

i∈Uh
y1i. The sampling error of (X̂h, Ŷ1h)
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can be expressed by the sampling error model(
X̂h

Ŷ1h

)
=

(
Xh

Y1h

)
+

(
Nhah
Nhbh

)
(2)

and ah and bh represent the sampling errors associated with X̂h/Nh and Ŷ1h/Nh,
respectively. Our parameter of interest is the population total Xh of xi in area h.

If there is no way to obtain the observation pairs (xi, y1i) from the two surveys,
then we derive the following area level model from (1):

Y1h = Nhβ0 + β1Xh + ẽ1h, (3)

where (Nh, Xh, Y1h, ẽ1h) =
∑

i∈Uh
(1, xi, y1i, e1i). We can express (3) in term of

population mean
Ȳ1h = β0 + X̄hβ1 + ē1h, (4)

where (X̄h, Ȳ1h, ē1h) = N−1h

∑
i∈Uh

(xi, y1i, e1i). If we use a nested error model

e1hi = εh + uhi (5)

where εh ∼ (0, σ2e) and uhi ∼ (0, σ2u), then ē1h ∼ (0, σ2e + σ2u/Nh). The nested error
model is quite popular in small area estimation (e.g. Battese et al, 1988) and it
assumes that Cov(e1hi, e1hj) = σ2e for i 6= j. Because Nh is often quite large, we
can safely assume that ē1h ∼ (0, σ2e). The model (3) is called structural error model
because it describes the structural relationship between the two latent variable Yh
and X1h. The two models, (2) and (3), are often encountered in the measurement
error model literature. Thus, the model for small area estimation can be viewed
as a measurement error model, as suggested by Fuller (1991) who originally used
the measurement error model approach in the unit-level modeling for small area
estimation.

Now, if we define (ȳ1h, x̄h) = N−1h (Ŷ1h, X̂h), combining (2) and (4), we have(
ȳ1h
x̄h

)
=

(
β0 β1
0 1

)(
1
X̄h

)
+

(
bh + ē1h
ah

)
which can also be written as(

ȳ1h − β0
x̄h

)
=

(
β1
1

)
X̄h +

(
bh + ē1h
ah

)
. (6)

Thus, when all the model parameters in (6) are known, the best estimator of X̄h

can be computed by

ˆ̄Xh =
{

(β1, 1)V −1h (β1, 1)′
}−1

(β1, 1)V −1h (ȳ1h − β0, x̄h)′ (7)

where Vh is the variance-covariance matrix of (bh + ē1h, ah)′. The estimator in
(7) can be called the Generalized Least Squares (GLS) estimator because it uses
the technique of the generalized least squares method in the linear model theory.
The GLS method is useful because it is optimal and it can incorporate additional
source of information naturally. For example, if another estimator ȳ2h for Ȳ2h is
also available and satisfies

Ȳ2h = γ0 + γ1X̄h + ē2h
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and
ȳ2h = Ȳ2h + ch,

then the extended GLS model is written as ȳ2h − γ0
ȳ1h − β0
x̄h

 =

 γ1
β1
1

 X̄h +

 ch + ē2h
bh + ē1h
ah

 (8)

and the GLS estimator can be obtained similarly.

Remark 1 Note that model (6) can also be written as(
β−11 (ȳ1h − β0)

x̄h

)
=

(
1
1

)
X̄h +

(
(bh + ē1h)/β1

ah

)
. (9)

The GLS estimator obtained from (9), which should be the same as the GLS esti-
mator obtained from (6), can be expressed as

ˆ̄Xh = αhx̄h + (1− αh) x̃h (10)

where x̃h = β−11 (ȳ1h − β0) and

αh =
V (x̃h)− Cov (x̄h, x̃h)

V (x̄h) + V (x̃h)− 2Cov (x̄h, x̃h)

=
σ2e,h + V (bh)− β1C(ah, bh)

σ2e,h + V (bh) + β21V (ah)− 2β1C(ah, bh)
,

The estimator x̃h, when computed with estimated parameter β̂ = (β̂0, β̂1), is called
the synthetic estimator and the optimal estimator in (10) is often called the compos-
ite estimator. It can be shown that, ignoring the effect of estimating β, the variance
of the composite estimator is equal to

V
(

ˆ̄Xh − X̄h

)
= αhV (x̄h) + (1− αh)Cov (x̄h, x̃h) (11)

and, as αh < 1, the composite estimator is more efficient than the direct estimator.

3. Parameter estimation

Now, we discuss estimation of the model parameters in (4). If X̄1, · · · , X̄H were
known, then the GLS estimator of (β0, β1) could be obtained by minimizing

Q(β0, β1) =
H∑

h=1

(
ȳ1h − β0 − β1X̄h

x̄h − X̄h

)′(
σ2e,h + V (bh) C(ah, bh)

C(ah, bh) V (ah)

)−1(
ȳ1h − β0 − β1X̄h

x̄h − X̄h

)
.

(12)

Because X̄1, · · · , X̄H are unknown, we minimize (12) for the choice of ˆ̄Xh = ˆ̄Xh(β0, β1)
in (7) or in (10). That is, we minimize

Q∗(β0, β1) =
H∑

h=1

(
ȳ1h − β0 − β1 ˆ̄Xh

β1(x̄h − ˆ̄Xh)

)′{
V

(
ȳ1h − β0 − β1 ˆ̄Xh

β1(x̄h − ˆ̄Xh)

)}−1(
ȳ1h − β0 − β1 ˆ̄Xh

β1(x̄h − ˆ̄Xh)

)
.

(13)
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After some algebra, it can be shown that (13) reduces to

Q∗(β0, β1) =
H∑

h=1

(ȳ1h − β0 − β1x̄h)2

V (ȳ1h − β0 − β1x̄h)
. (14)

As we can write
ȳ1h − β0 − x̄hβ1 = −ahβ1 + bh + ē1h,

we have
V (ȳ1h − β0 − x̄hβ1) = σ2e,h + (−β1, 1) Σh (−β1, 1)′ . (15)

where σ2e,h = V (ē1h) and Σh = V {(ah, bh)′}. As we can obtain a consistent estima-

tor of the variance-covariance matrix of (ah, bh), we can obtain (β̂0, β̂1) minimizing
Q∗(β0, β1) in (14) if σ2e,h is known. Thus, writing

Q∗(β0, β1) =
H∑

h=1

wh(β1) (ȳ1h − β0 − β1x̄h)2 , (16)

where
wh(β1) =

{
σ2e,h + (−β1, 1) Σh (−β1, 1)′

}−1
,

we have

∂

∂β0
Q∗ = 0 ⇐⇒

H∑
h=1

wh(β1) (ȳ1h − β0 − β1x̄h) = 0

and so
β̂0 = ȳw − β̂1x̄w, (17)

where

(x̄w, ȳw) =

{
H∑

h=1

wh(β̂1)

}−1 H∑
h=1

wh(β̂1) (x̄h, ȳh) .

Plugging (17) into (16), we have only to minimize

Q∗1(β1) =

H∑
h=1

wh(β1) {ȳ1h − ȳw − β1(x̄h − x̄w)}2 . (18)

Thus, we need to find the solution to ∂Q∗1/∂β1 = 0 where

∂

∂β1
Q∗1 =

H∑
h=1

{
∂

∂β1
wh (β1)

}
{ȳ1h − ȳw − β1(x̄h − x̄w)}2

−2
H∑

h=1

wh(β1)(x̄h − x̄w) {ȳ1h − ȳw − β1(x̄h − x̄w)} .

Using
∂

∂β1
wh(β1) = −2 {wh(β1)}2 {β1V (ah)− C(ah, bh)} ,

and

{ȳ1h − ȳw − β1(x̄h − x̄w)}2 p→ σ2e,h + (−β1, 1) Σh (−β1, 1)′ = 1/wh(β1),
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where
p→ denotes the convergence in probability, the solution to ∂Q∗1/∂β1 = 0

satisfies

β̂1 =

∑H
h=1wh(β̂1) {(x̄h − x̄w) (ȳ1h − ȳ1w)− C(ah, bh)}∑H

h=1wh(β̂1)
{

(x̄h − x̄w)2 − V (ah)
} . (19)

Note that the weight wh(β1) depends on β1. Thus, the solution (19) can be obtained
by an iterative algorithm. Once β̂1 is computed by (19), then β̂0 is obtained by (17).

Now, we discuss estimation of model variance σ̂2e,h. The simplest method is the
method of moment (MOM). That is, we can use

E
{

(ȳ1h − β0 − x̄hβ1)2 − β21V (ah) + 2β1C(ah, bh)− V (bh)
}

= σ2e,h (20)

to obtain an unbiased estimator of σ2e,h. Under the nested error model in (5), we

have σ2e,h = σ2e and

E
{

(ȳ1h − β0 − x̄hβ1)2 − β21V (ah) + 2β1C(ah, bh)− V (bh)
}

= σ2e . (21)

Thus, similarly to Fuller (2009), the MOM estimator of σ2e can be obtained by

σ̂2e =

H∑
h=1

κh

{(
ȳ1h − β̂0 − x̄hβ̂1

)2
−
(
−β̂1, 1

)
Σh

(
−β̂1, 1

)}
(22)

where

κh ∝
{
σ̂2e +

(
−β̂1, 1

)
Σh

(
−β̂1, 1

)}−1
and

∑H
h=1 κh = 1. Because κh depends on σ̂2e , the solution (22) can be obtain iter-

atively, using σ̂2e = 0 as an initial value. Fay and Herriot (1979) used an alternative
method which is based on the iterative solution to nonlinear equation:

H∑
h=1

(
ȳ1h − β̂0 − β̂1x̄h

)2
σ2e + (−β̂1, 1)Σ(−β̂1, 1)′

= H − 2.

Writing the above equation as g(σ2e) = H − 2, a Newton-type method for g(θ) = 0
with θ = σ2e can be obtained by

θ(t+1) = θ(t) +
1

g′(θ(t))

(
H − 2− g(θ(t))

)
(23)

where

g′(θ) = −
H∑

h=1

(
ȳ1h − β̂0 − β̂1x̄h

)2
{
θ + (−β̂1, 1)Σ(−β̂1, 1)′

}2 .

Assuming σ2e,h ≡ σ2e , we now describe the whole parameter estimation procedure
as follows:

[Step 1] Compute the initial estimator of (β0, β1) by setting σ̂2e = 0 in (17) and
(19).

[Step 2] Based on the current value of (β̂0, β̂1), compute σ̂2e using the iterative
algorithm in (23).
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[Step 3] Use the current value of σ̂2e , compute the updated estimator of (β0, β1) by
(17) and (19).

[Step 4] Repeat [Step 2]-[Step 3] until convergence.

Remark 2 If σ2e,h = σ2e is not true, we can consider some alternative model such
as

ēh ∼
(
0, X̄hσ

2
e

)
. (24)

To check whether model (24) holds, one can compute

νh =
(
ȳ1h − β̂0 − x̄hβ̂1

)2
− β̂21V (ah) + 2β̂1Ĉ(ah, bh)− V (bh) (25)

then plot νh and x̄h. If the plot shows a linear relationship, then (24) can be treated
as a reasonable model. Under model (24), we can obtain σ2e by a ratio method:

σ̂2e =

∑H
h=1 κhνh∑H
h=1 κh

ˆ̄Xh

(26)

where

κh ∝
{

ˆ̄Xhσ̂
2
e +

(
−β̂1, 1

)
Σh

(
−β̂1, 1

)}−1
with

∑H
h=1 κh = 1, ˆ̄Xh is defined in (10), and νh is defined in (25). Because κh also

depends on σ2e , the solution (26) can be obtained iteratively.

Remark 3 We can also consider a transformation x̄∗h = T (x̄h) and ȳ∗1h = T (ȳ1h)
to improve the approximation to asymptotic normality. To check the departure from
normality, plot nhaV̄ (x̄h) on x̄h. If the plot shows some structural relationship of
x̄h then the normality assumption can be doubted. Now, consider the following
transformation

T (x) = log(x). (27)

Note that the asymptotic variance of x̄∗h = T (x̄h) is equal to

V (x̄∗h)
.
=

1

(x̄h)2
V (x̄h) .

Such transformation is a variance stabilizing transformation and is useful when we
want to improve the approximation to normality.

Once the GLS estimator ˆ̄X∗h of X̄∗h is obtained, then we need to apply the inverse
transformation to obtain the best estimator of X̄h = T−1(X̄∗h) := Q(X̄∗h). Simply
applying the inverse transformation will lead to biased estimation. To correct for
the bias, we can use a second-order Taylor linearization. Using a Taylor expansion,
we have

Q
(

ˆ̄X∗h

)
.
= Q

(
X̄∗h
)

+Q′
(
X̄∗h
) ( ˆ̄X∗h − X̄h

)
+

1

2
Q
′′ (
X̄∗h
) ( ˆ̄X∗h − X̄h

)2
and so, if we use Q

(
ˆ̄X∗h

)
as an estimator for X̄h = Q(X̄∗h), we have, ignoring the

smaller order terms,

E
{
Q
(

ˆ̄X∗h

)}
= X̄h +

1

2
Q
′′ (
X̄∗h
)
V
(

ˆ̄X∗h

)
= X̄h +

1

2
X̄hV

(
ˆ̄X∗h

)
.
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For the transformation in (27), we have Q(X̄∗h) = exp(X̄∗h) and so Q
′′ (
X̄∗h
)

= X̄h.

Thus, ˆ̄Xh = Q( ˆ̄X∗h), we have

E
(

ˆ̄Xh

)
∼= X̄h +

1

2
X̄hV

(
ˆ̄X∗h

)
.

and the bias-corrected estimator of X̄h is

ˆ̄Xh,bc =
ˆ̄Xh

1 + 0.5V ( ˆ̄X∗h)
(28)

and V ( ˆ̄X∗h) is computed by the MSE estimation method which will be discussed in
Section 4.

4. MSE Estimation

We now discuss mean squared error (MSE) estimation of the GLS estimator ˆ̄Xh

which is given by (10). Note that the GLS estimator is a function of (β0, β1) and σ2e .

If the model parameters are known, then the MSE of ˆ̄Xh is equal to Mh1 = αhV (x̄h),

as discussed in Remark 1. That is, writing θ = (β0, β1, σ
2
e) and ˆ̄Xh = ˆ̄Xh(θ), the

actual prediction for X̄h is computed by ˆ̄Xeh = ˆ̄Xh(θ̂). To account for the effect
of estimating the model parameters, we first note the following decomposition of

MSE( ˆ̄X∗h):

MSE( ˆ̄Xeh) = MSE( ˆ̄Xh) + E
{

( ˆ̄Xeh − ˆ̄Xh)2
}

=: Mh1 +Mh2

We consider a jackknife approach to estimate the MSE. The following steps can be
used for the jackknife computation.

Step 1. Calculate the k-th replicate θ̂(−k) of θ̂ by deleting the k-th area data set
(x̄k, ȳ1k) from the full data set {(x̄h, ȳ1h) ;h = 1, 2, · · · , H}. This calculation

is done for each k to get H replicates of θ:
{
θ̂(−k); k = 1, · · · , H

}
which, in

turn, provide H replicates of ˆ̄Xh:
{

ˆ̄X
(−k)
h ; k = 1, 2, · · · , H

}
, where ˆ̄X

(−k)
h =

ˆ̄Xh(θ̂(−k)).

Step 2. Calculate the estimator of Mh2 as

M̂2h =
H − 1

H

H∑
k=1

(
ˆ̄X
(−k)
h − ˆ̄Xh

)2
. (29)

Step 3. Calculate the estimator of Mh1 as

M̂1h = α̂
(JK)
h V̂ (x̄h) +

(
1− α̂(JK)

h

)
Ĉ (x̄h, ȳ1h) (30)

where α̂
(JK)
h is a bias-corrected estimator of αh given by

α̂
(JK)
h = α̂h −

H − 1

H

H∑
k=1

(
α̂
(−k)
h − α̂h

)
,
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α̂h =
σ̂2e + V (bh)− β̂1C(ah, bh)

σ̂2e + V (bh) + β̂21V (ah)− 2β̂1C(ah, bh)
,

and

α̂
(−k)
h =

σ̂
(−k)2
e + V (bh)− β̂(−k)1 C(ah, bh)

σ̂
(−k)2
e + V (bh) + (β̂

(−k)
1 )2V (ah)− 2β̂

(−k)
1 C(ah, bh)

.

Remark 4 For the transformation in (27), we use the bias-corrected estimator in

(28) and its MSE estimation method needs to be changed. Using ˆ̄Xeh,bc to denote

the bias-corrected estimator in (28) evaluated at θ̂, we can have the

MSE( ˆ̄Xeh,bc) = MSE( ˆ̄Xeh)

= MSE
{
Q
(

ˆ̄X∗eh

)}
∼=

{
Q′
(
X̄∗h
)}2 ·MSE

(
ˆ̄X∗eh

)
= X̄2

h ·MSE
(

ˆ̄X∗eh

)
.

where the first equality follows that ˆ̄Xh,bc − ˆ̄Xh is of order Op(n
−1
h ). The MSE of

ˆ̄X∗h, the EGLS estimator of X̄∗h after transformation, is computed by (29) and (30).

Once MSE
(

ˆ̄X∗eh

)
is estimated, we should multiply it by ˆ̄X2

h to obtain the MSE

estimator of the back-transformed EGLS estimator ˆ̄Xeh,bc.

5. Application to Korean Labor Force Survey

We now consider an application of the proposed method to the labor force surveys in
Korea. In Korea, two different labor force surveys are used to obtain the information
about employment. One is the Korean Labor Force (KLF) survey and the other is
the Local Area labor force (LALF) survey. The KLF survey has about 7K sample
households but LALF has about 200K sample households. Because LALF is a
large-scale survey employing a lot of part time interviewers, there are certain level
of measurement errors in the LALF survey. We assume that the KLF has no
measurement error, although it has significant sampling errors in small area levels.
The KLF sample is a second-phase sample from the LALF sample. Thus, the
sampling errors for two survey estimates are correlated. Let X̄h be the (true)
unemployment rate for area h. The small area level we considered is called Gu.
The number of “Gu” in Korea is 229.

We observe x̄h from KLF survey and ȳ1h from the LALF survey. To construct
linking models, we first partition the population into two regions, urban region
and rural region, based on the proportion of the households working on agricultural
practice. Within each region, we build models separately (same model but allows for
different parameter) and estimate the model parameters separately. The structural
model is

Ȳh = β1X̄h + eh (31)

with eh ∼ (0, σ2e). Here, we set β0 = 0 to guarantee that the GLS estimator of X̄h

is nonnegative. The sampling error model remains the same. In this case, β1 can
be estimated by

β̂1 =

∑H
h=1wh(β̂1) {x̄hȳ1h − C(ah, bh)}∑H

h=1wh(β̂1)
{
x̄2h − V (ah)

} . (32)
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The model variance is estimated by the method of moment technique in (22) with
β̂0 = 0. The GLS estimator can be computed by (10) with x̃h = β̂−11 ȳ1h.

In addition to the two surveys, we can also use the Census information. The
GLS model incorporating the three information can be expressed as Ȳ2h

ȳ1h
x̄h

 =

 γ1
β1
1

 X̄h +

 ē2h
bh + ē1h
ah


where Ȳ2h is the census result for area h. Because Census estimate does not suffer
from sampling error, we have only only model error e2h which represents the error
when we model E(Ȳh2) = γ1X̄h. The model parameters can be obtained using the
method in Section 3 with Σ = diag(0, V (ah)). The GLS estimator of X̄h can be
obtained easily. The MSE part can be computed by using the fact that

V
(

ˆ̄Xh − X̄h

)
=

 γ1
β1
1

′V
 ē2h

bh + ē1h
ah


 γ1

β1
1

−1 := Mh1

and applying the jackknife method for bias correction.

Table 2: Summary of the MSE performance of the small area estimates

MSE 1st Q Median 3rd Q Mean

KLF 0.0000630 0.0001210 0.0002395 0.0002476
LALF 0.0001123 0.0001330 0.0001695 0.0001482
GLS 1 0.0000444 0.0000738 0.0001210 0.0000893
GLS 2 0.0000405 0.0000543 0.0000721 0.0000575

Table 2 presents the performance the small area estimates in terms of the MSE
estimates. We considered four different estimators of Ȳh. KLF represents the result
derived using data only Korea Labor Force survey, LALF represents the result using
only Local Area Labor Force survey, GLS 1 represents the result for combining both
of survey KLF and LALF, and GLS 2 represents the result for combining KLF,
LALF and the census data. Table 2 shows that the GLS 2 method provides the
smallest mean squared errors.

6. Concluding Remark

Small area estimation problem is treated as a measurement error model prediction
problem. The sampling errors of the direct estimators are treated as measurement
errors and the structural error model can be used to link the other auxiliary informa-
tion to the direct estimator. The measurement error model approach is particularly
useful when there are several auxiliary information in area-levels. The resulting
estimator is optimal in the sense of minimizing the mean squared errors among the
class of unbiased estimators that are linear in the available information.

In the example of the Korean labor survey application, two sample estimates
and the Census information are used to compute the GLS estimates for small area
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parameters and the two sample estimates are correlated due to the two-phase sam-
pling structure. We simply used linear regression models for the linking models,
mainly for the sake of computational simplicity. Instead of the linear model, one
could consider a generalized linear model to improve model prediction power. Such
extension would involve the theory for nonlinear measurement error models. Further
investigation on this extension will be a topic of future research.
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