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Abstract

Data from a hidden truncated Pareto(II) distribution are to be used to make inferences about the
inequality, precision and truncation parameters. Two different types of dependent prior analyses are
reviewed and compared with each other. It is argued that mathematical tractability should be, perhaps,
a minor consideration in choosing the appropriate choices of the hyperparameters for the prior densities.
Some illustrative examples are provided.

1 Introduction

Income and wealth data is typically modeled using some variant of the classical Pareto distribution. In
practice, it is frequently likely that the observed data has been truncated with respect to some unobserved
covariable. In this paper a hidden truncation formulation of this scenario is considered. A bivariate Pareto
(II) distribution is assumed for the variable of interest and the unobserved covariable. Thus we are dealing
with data from a hidden truncated Pareto(II) distribution with shape or inequality parameter α, precision
parameter τ, and truncation parameter θ. In this case the natural parameter space is Ω = (α > 0, τ >
0, θ > 0). Two different types of conditional prior densities have been taken into consideration. In one,
dependent priors for the inequality and precision parameter are assumed together with an independent
prior for the truncation parameter. While for the second approach, we consider a full conditional prior
set-up for all the three parameters. This article is concerned with inference using both of these proposed
priors. This paper draws heavily on the works published earlier in Arnold and Press (1983, 1986, 1989).
In the Arnold and Press papers, discussion dealt with Bayesian inference for the classical Pareto family.
In contrast we focus our attention on associated Bayesian inference for a Pareto(II) distribution under the
hidden truncation paradigm. The approach advocated in the present paper involves use of conditionally
specified prior families. This is attained as follows. Suppose we have k-parameters ζ = (ζ1, ζ2, · · · , ζk). A

convenient notation for the k-dimensional case dealing with ζ involves use of the symbol ζ(i) to denote the

vector ζ with the i-th co-ordinate deleted, i = 1, 2, · · · , k. First suppose that for a fixed i, ζ(i) is known. We

then determine, under such circumstances, a natural conjugate prior family for ζi , say f(ζi|τ (i)) where τ (i)

are hyperparameters. We then seek a joint prior in the family of joint distribution for ζ in which, for each i,

the conditional distribution of ζi given ζ(i) will be a member of the family f(ζi|τ (i)) with hyperparameters

τ (i) which may depend on ζ(i). The number of hyperparameters may be large, but this is a price we have
to pay to avoid facing a possibly un-natural dependence structure in the class of priors we use to match
our informed expert’s belief. In this paper suggestions will be made regarding efficient ways of eliciting
values of the hyperparameters. This paper is organized in the following way. In section 2, we will discuss
in detail the concept of hidden truncation. In section 3, we will consider the hidden truncation density
for a bivariate Pareto(II) model. In section 4, we consider the choice of priors in which the inequality and
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precision parameters are dependent but independent of the truncation parameter. In section 5, we consider a
reasonable way to choose hyperparameters for the prior distribution with an illustrative example. In section
6, we consider a real life application of our proposed procedure. In section 7, we consider the full conditional
prior set-up in which we have conditionally specified priors for all the parameters along with an example. In
section 8, we provide a short discussion on the use of locally uniform or diffuse priors in such situations.

2 Hidden truncation

We consider a two dimensional absolutely continuous random vector (X,Y ). We might focus on the condi-
tional distribution of X given Y ∈M where M is a Borel set in R. Indeed we could write

fX|Y ∈M (x) = fX(x)
P (Y ∈M |X = x)

P (Y ∈M)
. (1)

However, we will concentrate on hidden truncation of one of the following two forms only
(i)Lower truncation,where M = (c,∞).
(ii)Upper truncation,where M = (−∞, c).
For upper truncation (equivalently, truncation from above) at c, in which observations are only available

for X’s whose concomitant variable Y is less than c, equation (1) reduces to

fc−(x) = fX(x)
P (Y ≤ c|X = x)

P (Y ≤ c)
. (2)

Models of this type are thus characterized by
(i) fX(x), the density assumed for X.
(ii) The conditional density of Y given X, fY |X(y|x).
(iii) The specified value c.
However models of this type also may depend on other parameters in addition to c. In the expression

in (2) we are actually using P (Y ≤ c|X = x) for one value of c. Moreover, P (Y ≤ c|X = x) could be any
function gc(x), satisfying 0 < gc(x) < 1 which is an increasing function in c so that for the denominator in
(2) we can define

P (Y ≤ c) =

∫ ∞
−∞

gc(x)fX(x)dx. (3)

In this case we can rewrite equation (2) as

fc−(x) = fX(x)
gc(x)∫∞

−∞ gc(x)fX(x)dx
.

3 Hidden truncated density for the bivariate Pareto model

We first consider a bivariate Pareto (II) distribution where both the marginals and also both the conditionals
are members of a Pareto (II) family. The joint survival function of such a bivariate density is given by

P (X > x, Y > y) = [1 + (
x− µ1

σ1
) + (

y − µ2

σ2
)]−α, x ≥ µ1, y ≥ µ2, (4)

where µ1, σ1, µ2, σ2 are the location and scale parameters for X and Y respectively and α is the index of
inequality. A convenient source for discussion of bivariate and multivariate Pareto models is Arnold(1983).
Also see Johnson, Kotz and Balakrishnan(2000, Chapter 52).
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The joint distribution function of X and Y is given by

F (x, y) = P (X ≤ x, Y ≤ y)

= 1− [1 + (
x− µ1

σ1
)]−α − [1 + (

y − µ2

σ2
)]−α + [1 + (

x− µ1

σ1
) + (

y − µ2

σ2
)]−α, x ≥ µ1, y ≥ µ2,

and the joint density of (X,Y ) is given by

fX,Y (x, y) =
∂

∂x

∂

∂y
[F (x, y)]

=
α(α+ 1)

σ1σ2
[1 + (

x− µ1

σ1
) + (

y − µ2

σ2
)]−(α+2)I(x ≥ µ1, y ≥ µ2). (5)

Consequently the conditional density of Y for each fixed X = x will be

fY |X(y|x) =
fX,Y (x, y)

fX(x)

=
(α+ 1)

σ2(1 + (x−µ1

σ1
))

[1 +
(y−µ2

σ2
)

1 + (x−µ1

σ1
)
]−(α+2)I(y ≥ µ2). (6)

after some algebraic simplification. Let us first consider the situation in which X is observed only if Y is
greater than some positive value b. In that case the truncated density of X given that Y ≥ b with the
condition that b > µ2 is given by

fHTX|Y≥b(x) = fX(x)
P (Y ≥ b|X = x)

P (Y ≥ b)
I(x ≥ b). (7)

In the bivariate Pareto(II) case

P (Y ≥ b|X = x) =

∫ ∞
b

fY |X(y|x)dy =
1

(1 +
(
b−µ2
σ2

)

1+(
x−µ1
σ1

)
)α+1

,

while P (Y ≥ b) = (1 + b−µ2

σ2
)−α.

Hence on substitution in equation (7) we get the following

fHTX|Y≥b(x) =
α

σ1(1 + ( b−µ2

σ2
))

(1 +

x−µ1

σ1

1 + ( b−µ2

σ2
)
)−(α+1)I(x ≥ µ1). (8)

From the above it is quite clear that the conditional distribution of X given Y ≥ b is again a member of a
Pareto(II) family i.e.,

X|Y ≥ b ∼ Pareto(II)(µ1, σ
∗
1 = σ1(1 + (

b− µ2

σ2
)), α).

So it is obvious that with lower truncation there is no augmentation in the model. In contrast let us consider
the situation in which X is observed only if Y is less than some positive value c. In that case the truncated
density of X given that Y ≤ c with the condition that c > µ2 is given by:

fHTX|Y≤c(x) = α

σ1(1−(1+(
c−µ2
σ2

))−α)
[(1 + (x−µ1

σ1
))−(α+1) − (1 + ( (x−µ1)

σ1
) + ( c−µ2

σ2
))−(α+1)]I(x ≥ µ1). (9)

We usually estimate µ1 by X1:n, where X1:n = min1≤i≤nXi and so we can subtract it from each of the
other observations and assume that µ1 = 0. From here after whenever it appears we will follow the above
convention about µ1. Also for the sake of notational simplicity let us consider
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ψ(α, θ) = 1− (1 + (
c− µ2

σ2
))−α = 1− (1 + θ)−α,

where θ = c−µ2

σ2
> 0. With this notation, the density can be written as

fHTX|Y≤θ(x) =
α

σ1ψ(α, θ)
[(1 +

x

σ1
)−(α+1) − (1 +

x

σ1
+ θ)−(α+1)]I(x ≥ 0). (10)

It is evident from the density in (10) that the hidden truncated density involving upper truncation really
augments the original model for X. This is in contrast to the fact that lower truncation does not augment the
original model for X. Hidden truncated densities involving lower truncation are simply Pareto(II) densities
with a revised set of parameters. In succeeding sections we address the problem of estimating and making
inferences under the Bayesian paradigm about all the parameters (involved in the model) based on a sample
of n i.i.d. observations X1, X2, · · · , Xn with common density (10). Note that the case θ = 0 corresponds to
the situation in which no hidden truncation has occurred.

4 Choice of dependent priors for the inequality and shape param-
eters and an independent prior for the truncation parameter

Let us consider a random sample of size n from the density (10), denoted by X1, X2, · · · , Xn. Then the
corresponding likelihood will be

L(α, τ, θ) =

n∏
i=1

ατ

ψ(α, θ)
[(1 +Xiτ)−(α+1) − (1 +Xiτ + θ)−(α+1))], (11)

where τ = 1
σ1
. We will first consider the situation where the prior information for the truncation parameter

θ will be independent of the prior information for α and τ . For the prior information of α and τ, we consider
the following:

• The conditional density of α given τ is a Gamma distribution with shape parameter = ξ1(τ) and
intensity parameter = λ1(τ). So that the conditional density of α given τ will be

f(α|τ) ∝ αξ1(τ)−1 exp(−αλ1(τ))I(α > 0). (12)

• The conditional density of τ given α is a Gamma distribution with shape parameter = ξ2(α) and
intensity parameter = λ2(α). So that the conditional density of τ given α will be

f(τ |α) ∝ τ ξ2(α)−1 exp(−τλ2(α))I(τ > 0). (13)

• While for θ we consider a diffuse prior of the form f(θ) ∝ 1
θ I(θ > 0).

Note that both the conditional densities of α given τ and also τ given α are members of gamma family.
So the joint density (alternatively the joint prior) will be of the form (Arnold, Castillo and Sarabia (1999))

f(α, τ) ∝ exp[−αc11 + c12 + c13 log(1 + α) + log τ(−αc21 + c22 + c23 logα)

− τ(−αc31 + c32 + c33 logα)]I(α > 0)I(τ > 0), (14)
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where cij ,∀(i, j = 1, 2, 3) are the hyperparameters of the joint distribution. The joint posterior will be

f(α, τ, θ|data)

∝ L(α, τ, θ)× f(α, τ)× f(θ)

∝
n∏
i=1

[
ατ

ψ(α, θ)
((1 + xiτ)−(α+1) − (1 + xiτ + θ)−(α+1))]

× exp[−αc11 + c12 + c13 log(1 + α) + log τ(−αc21 + c22 + c23 logα)

− τ(−αc31 + c32 + c33 logα)]× 1

θ
I(α > 0)I(τ > 0)I(θ > 0). (15)

Our proposed conditionally specified priors include, as special cases, independent gamma marginals in (14).
This corresponds to initially setting c21 = c23 = c31 = c33 = 0. This particular approach has been advocated
by those who consider marginal assessment of prior beliefs to be most viable (see e.g., Press (2003)). However,
the use of the full family of conditionally specified priors comes with a price that must be paid for the flexibility
of this family of priors. We have in total 8 hyperparameters to assess. But this problem of assessment, as
we shall discuss in the next section, is not really an insurmountable task to perform.

5 Choice of the hyperparameters

In our case the conditional density of α given τ , for each fixed value of τ (from (14))

f(α|τ) =
f(α, τ)

f(τ)

= α−τc33+c13−c23 log τ exp[−α(c11 − τc31 + c21 log τ)]

× (c11 − τc31 + c21 log τ)−τc33+c13−c23 log τ+1

× [Γ(−τc33 + c13 − c23 log τ + 1)]−1I(α > 0). (16)

Equivalently the conditional distribution is α given τ is Gamma with shape=−τc33 + c13 + c23 log τ and
intensity=c11 − τc31 + c21 log τ.

So that for any real r ≥ 1 we will have,

E(αr|τ)

=
Γ(−τc33 + c13 − c23 log τ + 1 + r)

(c11 − τc31 + c21 log τ)−τc33+c13+c23 log τ+1+r × Γ(−τc33 + c13 + c23 log τ + 1)
. (17)

Again the conditional density of τ given α , for each fixed value of α is given by (from (14))

f(τ |α) =
f(α, τ)

f(α)

= τ c22+c23 logα−αc21 exp[−τ(−αc31 + c32 + c33 logα)]

× (−αc31 + c32 + c33 logα)c22+c23 logα−αc21+1

× [Γ(c22 + c23 logα− αc21 + 1)]−1I(τ > 0). (18)

Equivalently the conditional distribution is τ given α is Gamma with shape=c22 + c23 logα − αc21 and
intensity=−αc31 + c32 + c33 logα.

So that for any real r ≥ 1 we will have,

E(τ r|α)

=
Γ(c22 + c23 logα− αc21 + 1 + r)

(−αc31 + c32 + c33 logα)c22+c23 logα−αc21+r+1 × Γ(c22 + c23 logα− αc21 + 1)
. (19)
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Note: Here the notation Γ would imply a Gamma distribution and from hereafter whenever it appears it
would mean the same as mentioned above. If we insist on proper prior densities, then there are constraints
which must be imposed on the parameters in (14) to ensure that certain parameters appearing in the
conditional densities are always positive to yield proper conditional densities. Adequate constraints are:
c11 > 0, c21 > 0, c31 < 0, c32 > 0, c33 > 0, c22 + c23 − c21 > −1, andc13 + c23 − c33 > −1. From the above it is
quite clear that we have the complete knowledge of conditional distribution of τ given α and α given τ for
each fixed values of α and τ respectively. For a conditionally specified priors such as (16) and (18), it is quite
natural to try to match conditional moments whose approximate values will be provided by our informed
expert who has collected the data. In our case 8 such conditional moments will suffice to evaluate all the
hyperparameters. We propose more generally to ask the experimenter to provide prior values for more than
8 conditional moments. We recognize the fact that it is highly unlikely that such choices of prior values will
be consistent and what we propose is to select a prior of the form (14) that will have conditional moments
that are minimally disparate from those provided apriori by the expert. Suppose that prior assessed values
for the conditional mean and variances for several different choices of the precision τ and for different given
choices of the index of inequality α are solicited. Thus the experimenter provides his/her best guesses for
the quantities (the subscript AV stands for assessed value)

EAV (α|τ = τi) = δi, i = 1, 2, · · · ,m, (20)

V arAV (α|τ = τi) = ηi, i = 1, 2, · · · ,m, (21)

EAV (τ |α = αj) = βj , j = 1, 2, · · · , l (22)

V arAV (τ |α = αj) = χj , j = 1, 2, · · · , l, (23)

where 2m + 2l ≥ 8. Note that [τi]
m
i=1 and [αj ]

l
j=1 are known quantities. If indeed a density of the form

(14) approximates the joint distribution of (α, τ) then the values of the conditional moments (20)-(23) will
be well approximated by expressions derived from equations(18), (20). One reasonable approach (since
exact equality is unlikely to be possible for any choice of the parameters c) is to set up as an (although
seemingly arbitrary) objective function the sum of squared differences between the left and right hand sides
of (20)-(23),(2m+ 2l terms in total) and using a convenient optimization program to minimize this objective
function. The assessed prior would then be (14) with this choice of parameters.

Note: We know that if X ∼ Gamma(shape = α, intensity = λ) then E(X) = α
λ and V ar(X) = α

λ2 , so

we can write [E(X)]2

V ar(X) = α and E(X)
V ar(X) = λ, and we will use this idea in defining the objective function to be

minimized for choosing appropriate values of cij ’s which will be minimally inconsistent with the given values
of conditional moments. Specifically we set up our objective function as follows:

∆(c)

=
m∑
i=1

[
(δi)

2

ηi
− (−τic33 + c13 − c23 log τi + 1)]2 +

m∑
i=1

[
δi
ηi
− (c11 − ηic31 + c21 log ηi)]

2

+

l∑
j=1

[
(βj)

2

χj
− (c22 + c23 logαj − αjc21 + 1)]2 +

l∑
j=1

[
βj
χj
− (c32 + c33 logαj − αjc31)]2. (24)

where c = (c11, c13, c21, c22, c23, c31, c32, c33). Next we consider partial derivatives with respect to cij ’s and
set them equal to zero. So we will have (i.e., ∂

∂cij
∆(c) = 0, ∀(i, j)) the following set of 8 equations:

mc11 − [

m∑
i=1

τi]c31 + [

m∑
i=1

log τi]c21 =

m∑
i=1

δi
ηi
. (25)

mc13 − [

m∑
i=1

τi]c31 + [

m∑
i=1

log τi]c21 =

m∑
i=1

δ2i
ηi
−m. (26)
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[

m∑
i=1

(log τi)
2 +

l∑
j=1

α2
j ]c21 + [

m∑
i=1

log τi]c11

− [

m∑
i=1

τi log τi]c31 − (

l∑
j=1

αj)c22 − (

l∑
j=1

αj logαj)c23

=

m∑
i=1

δi
ηi

log τi +

l∑
j=1

αj −
l∑

j=1

(βj)
2

χj
αj . (27)

lc22 + [

l∑
j=1

logαj ]c23 − [

l∑
j=1

αj ]c21 = −l +

l∑
j=1

(βj)
2

χj
. (28)

[

m∑
i=1

(log τi)
2 +

l∑
j=1

(logαj)
2]c23 − [

m∑
i=1

τi log τi]c33

− [

l∑
j=1

αj logαj ]c21 + [

l∑
j=1

αj ]c22

= −(m+ l) +

m∑
i=1

(δi)
2

ηi
log τi +

l∑
j=1

(βj)
2

χj
logαj (29)

− [

m∑
i=1

τi]c11 − [

m∑
i=1

τi log τi]c21 + [

l∑
j=1

αj ]c32

[

m∑
i=1

τ2i +

l∑
j=1

α2
j ]c31 − [

l∑
j=1

αj logαj ]c33

= −
m∑
i=1

δi
ηi
τi −

l∑
j=1

βj
χj
αj . (30)

−[

l∑
j=1

αj ]c31 − lc32 − [

l∑
j=1

logαj ]c33 =

l∑
j=1

βj
χj
. (31)

− [

m∑
i=1

τi]c13 −−[

m∑
i=1

τi log τi]c23 − [

l∑
j=1

αj logαj ]c31

+ [

m∑
i=1

τ2i +

l∑
j=1

(logαj)
2]c33

=

m∑
i=1

τi −
m∑
i=1

(δi)
2

ηi
τi −

l∑
j=1

(βj)
2

χj
logαj . (32)

An alternative approach would involve matching conditional percentiles. However since for the Gamma
family the percentile functions are not available in closed form, this approach will be more difficult to
implement.

In the next section we provide a real life situation where we apply our above mentioned procedure.
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6 Real life example

We consider the North Dakota Counties data(2010) (data source: US Census Bureau 2010), consists of
53 observations. Each observation represents the total average income(in dollars) per week for all the 53
counties. Plausibly the data set will be described by a hidden truncated Pareto(II) model of the form (10).
To this end, first we apply all 3 of our classical estimation procedures for the hidden truncated bivariate
Pareto(II) model (estimation by fractional method of moments, quartile method of estimation and also
estimation by maximum likelihood) and we get the following estimates for the parameters:

• Estimation by the fractional method of moments: α = 3.5884, τ = 2.6543 and θ = 1.1114.

• Estimation by the sample quantile method : α = 3.5909, τ = 2.6491 and θ = 1.1068.

• Estimation by the method of maximum likelihood: α = 3.5947, τ = 2.6617 and θ = 1.1288.

So we can consider (approximately) the following numbers as the estimates for our parameters: α = 3.59,
θ = 1.11 and τ = 2.65. So our fitted hidden truncated density will be

fHTX|Y≤1.11(x) =
3.59× 2.65

0.9675254
[(1 + 2.65x)−(3.59+1) − (1 + 2.65x+ 1.11)−(3.59+1)]I(x ≥ 0). (33)

First of all we consider a graph in which we plot both the density of our data and also the density of X
to see how well our probability distribution of X fits the data.
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Figure 1: Histogram and fitted density plot of the North Dakota weekly average wage data(2010).

Next we consider the corresponding Bayesian estimation based on our conditional prior set up. For
illustrative purpose we assume that our informed expert has supplied us with the following :

• E(α|τ = 2) = 3.

• V ar(α|τ = 2) = 2.

• E(τ |α = 2.5) = 1.2.

• V ar(τ |α = 2.5) = 1.7.

• E(α|τ = 1) = 2.

• V ar(α|τ = 1) = 1.5.

• E(τ |α = 3) = 2.1.

• V ar(τ |α = 3) = 1.05.

We need to choose cij ’s that will minimize the sum of squares of the discrepancies between the elicited
values and the corresponding functions of the cij ’s.

Using the method as mentioned in section 5, we get the following estimated values of the cij ’s which
are consistent with the given information on conditional moments: ĉ = (c11 = 1.3625, c13 = 0.1206, c21 =
0.3967, c22 = 1.6026, c23 = 2.1194, c31 = −1.4574, c32 = 1.2676, c33 = 1.3812).

Note: It is quite easy to establish that the above choices of cij ’s correspond to a proper (joint) posterior
density for α, τ, θ.

We perform a Bayesian analysis with the above set of assessed values of the hyperparameters for the
prior distributions assumed for our model.

6.1 Posterior simulation study

We consider an MCMC procedure for the Bayesian estimation of the parameters. For the jumping distri-
bution we consider dependent gamma distributions for α and τ and independent gamma prior for θ. The
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posterior analysis is based on the posterior means for each of those three parameters. Below we provide for
our MCMC simulation study, various choices for the initial values of the parameters, and the starting dis-
tribution for all the parameters under study: Initial choices of the parameters: α = 2.1, τ = 1.81, θ = 0.57.
Jumping distribution of the parameters :

• α|τ ∼ Γ(shape=0.1206+2.1194 log τ -1.3812 τ ,intensity=1.3624+1.5748 τ+0.3967 log τ),

• τ |α ∼ Γ(shape=1.6026+2.1194 logα-0.3967 α, intensity=1.4574 α+1.2676+1.3812logα).

• θ ∼ Γ(2.6, 2.2),

after substituting the estimated values of the hyperparameters in the conditional densities for α and τ
given earlier. Next we provide the results of our Bayesian analysis given below: Posterior mean(α)=3.1643,
Posterior mean(τ)=2.6241, Posterior mean(θ)=0.7324. The corresponding (95%) prediction intervals are
(1.1567,3.2239), (2.3121,4.4763), and (0.3287,1.9843) for α, τ and θ respectively.

7 An illustrative example with using simulated data

Suppose we have (from our informed expert) the following set of information:

• E(α|τ = 2) = 1.5.

• V ar(α|τ = 2) = 2.

• E(τ |α = 3) = 0.17.

• V ar(τ |α = 3) = 1.16.

• E(α|τ = 1.5) = 2.4.

• V ar(α|τ = 1.5) = 3.9.

• E(τ |α = 2) = 0.29.

• V ar(τ |α = 2) = 1.05.

We need to choose cij ’s that will minimize the sum of squares of the discrepancies between the elicited
values and the corresponding functions of the cij ’s.

On solving the above set of linear equations (using the method as mentioned in section 5) we get the fol-
lowing optimum choices for the cij ’s c = (1.9843,−0.0446,−0.4021, 0.9649, 1.0125,−1.3018, 0.7081,−0.1203).
Next we perform a Bayesian analysis for our model based on the following choices of the cij ’s as the hyper-
parameters of the prior distribution assumed for the α and τ .

7.1 Simulation study

We draw samples of size n = 100 and n = 200 from our density given earlier(for a particular choice of the
parameter values α = 3, τ = 1 and θ = 1.5). We consider dependent gamma priors for α and τ while for θ,
we consider independent gamma prior as before. Specifically we consider the following:

• α|τ ∼ Γ(shape=-0.0446-1.3018 log τ +1.0125 τ ,intensity=1.9843+1.3018 τ -0.4021 log τ),

• τ |α ∼ Γ(shape=0.9649+1.0125 logα+0.4021 α, intensity=-1.3018 α+0.7081-0.1203logα).

• θ ∼ Γ(2.9, 2.4),

after substituting the estimated values of the hyperparameters in the conditional densities for α and τ given
earlier. Then for the Bayesian analysis we consider the MCMC technique to draw samples from the posterior
distribution for each of the parameters and we provide the results in the table given below:

The values in the last column of the table are Bayesian confidence intervals(95%) for α, τ and θ respec-
tively.
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n Posterior Mean(α) Posterior Mean(τ) Posterior Mean(θ) Credible interval
100 2.9410 0.9811 1.5489 (0.1014,5.9793),(0.0163,1.9734),(0.0215,3.4642)
200 2.9732 0.9532 1.5129 (0.1314, 4.3523),(0.0252,1.7565),(0.1235, 3.2307)

Table 1: Bayesian estimates of the parameters

8 Full conditional prior set-up

Here we consider the following:

1. The conditional density of α given τ and θ is a Gamma distribution with shape parameter = ξ1(τ, θ)
and intensity parameter = λ1(τ, θ). So that the conditional density of α given τ will be

f(α|τ, θ) ∝ αξ1(τ,θ)−1 exp(−αλ1(τ, θ))I(α > 0). (34)

2. The conditional density of τ given α and θ is a Gamma distribution with shape parameter = ξ2(α, τ, )
and intensity parameter = λ2(α, θ). So that the conditional density of τ given α and θ will be

f(τ |α, θ) ∝ τ ξ2(α,θ)−1 exp(−τλ2(α, θ))I(τ > 0). (35)

3. The conditional density of θ given τ and α is a Gamma distribution with shape parameter = ξ3(τ, α)
and intensity parameter = λ3(τ, α). So that the conditional density of θ given α and τ will be

f(θ|τ, α) ∝ θξ3(τ,α)−1 exp(−θλ3(τ, α))I(θ > 0). (36)

So the joint density of α τ and θ will be (since all the conditionals are members of exponential families
of densities) (according to Arnold, Castillo and Sarabia(1999))

f(α, τ, θ)

= exp[m000 −m100α+m200 logα−m010τ +m110τα−m210τ logα

+m020 log τ −m120α log τ +m220 logα log τ −m001θ +m101θα−m201θ logα

+m011θτ −m111αθτ −m021θ log τ +m121θα log τ +m211θτ logα

−m221θ log τ logα+m002 log θ

−m102α log θ +m202 log θ logα−m012τ log θ

+m112τα log θ −m212τ log θ logα−m022 log τ log θ

−m122α log τ log θ +m222 log θ logα log τ ]I(α > 0)× I(τ > 0)× I(θ > 0). (37)

Now if we consider mijk = 0 whenever i+ j + k > 2, then equation(37) reduces to

f(α, τ, θ)

= exp[m000 −m100α+m200 logα−m010τ +m110τα+m020 log τ

−m001θ +m101θα+m011θτ +m002 log θ]I(α > 0)× I(τ > 0)× I(θ > 0). (38)

Note: The reason that we have imposed the restriction mijk = 0 whenever i + j + k > 2 is simply because
we are looking for a simple but flexible family with less parameters than the 26 which appear in (37).
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8.1 Appropriate choice of hyperparameters

We have from (38), the joint (marginal) density of τ and θ will be

f(τ, θ) = exp[m000 −m010τ +m020 log τ −m001θ +m011θτ +m002 log θ]

×
∫ ∞
0

αm200 exp[−α(m100 −m110τ −m101θ)]dα

= exp[m000 −m010τ +m020 log τ −m001θ +m011θτ +m002 log θ]

× Γ(m200 + 1)

(m100 −m110τ −m101θ)m200+1
I(τ > 0)× I(θ > 0). (39)

So the conditional density of α given τ and θ for each fixed choices of τ and θ will be

f(α|τ, θ)

=
f(α, τ, θ)

f(τ, θ)

= exp[−α(m100 −m110τ −m101θ)]α
m200

× (m100 −m110τ −m101θ)
m200+1

Γ(m200 + 1)
I(α > 0). (40)

Equivalently we can say that the conditional density of α given τ and θ will be a gamma with shape=m200+1
and intensity=m100 −m110τ −m101θ.

• Similarly, the conditional density of τ given α and θ will be a gamma with shape=m020 + 1 and
intensity=m010 −m110α−m011θ.

• Also the conditional density of θ given α and τ will be a gamma with shape=m002+1 and intensity=m001−
m101α−m011τ.

• So we have in total 9 parameters to estimate which arem010,m020,m001,m011,m002,m100,m110,m101,m200.

Also note that for all the expressions for the conditional means and variances to be positive we need the
following restriction on the choices of mijk’s: (m100 > 0,m110 < 0,m101 < 0,m010 > 0,m011 < 0,m001 >
0,m101 < 0,m200 > −1,m020 > −1,m002 > −1). We can use the corresponding conditional moments for all
the parameters to evaluate those hyperparameters.

From (49)-(50), we can write that,

1. E[α|τ, θ] = m200+1
m100−m110τ−m101θ

, and V ar[α|τ, θ] = m200+1
(m100−m110τ−m101θ)2

.

2. E[τ |α, θ] = m020+1
m010−m110α−m011θ

, and V ar[τ |α, θ] = m020+1
(m010−m110α−m011θ)2

.

3. E[θ|α, τ ] = m002+1
m001−m101α−m011τ

, and V ar[θ|α, τ ] = m002+1
(m001−m101α−m011τ)2

.

Next we suppose that we have information (from our informed expert) on the conditional mean and
variances for all the above. For example suppose that we have,

• E[α|τ = 1, θ = 0.5] = 2.31

• V ar[α|τ = 1, θ = 0.5] = 1.05

• E[α|τ = 1.5, θ = 0.6] = 2.17

• V ar[α|τ = 1.5, θ = 0.6] = 2.91
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• E[τ |α = 2, θ = 0.5] = 1.16

• V ar[τ |α = 2, θ = 0.5] = 0.65

• E[τ |α = 3, θ = 0.6] = 1.78

• V ar[τ |α = 3, θ = 0.6] = 0.87

• E[θ|α = 2, τ = 1] = 3.09

• V ar[θ|α = 2, τ = 1] = 0.17

• E[θ|α = 3, τ = 1.5] = 3.45

• E[θ|α = 3, τ = 1.5] = 1.09.

Again as before, by using the methods mentioned in section 5, we get the following optimum choices for
the mijk’s m = (m010 = 2.0836,m110 = −0.1883,m011 = −0.1495,m101 = −0.0918,m100 = 0.9090,m001 =
8.5926,m020 = 9.3539,m200 = 2.3501,m002 = 32.5425).

As before, We perform a Bayesian analysis with the above set of assessed values of the hyperparameters
for the prior distributions assumed for our model.

8.2 Simulation study

We draw samples of size n = 100 and n = 200 from our density given earlier(for a particular choice of the
parameter values α = 3, τ = 1 and θ = 1.5). We consider dependent gamma priors for all the parameters
for our study. Specifically we consider the following for the jumping distribution:

• α|τ, θ ∼ Γ(shape=2.3501+1, intensity=0.9090+0.1883 τ+0.09182θ),

• τ, |α, θ ∼ Γ(shape=9.3539+1, intensity=2.0836+0.1883 α+0.1495 θ),

• θ|α, τ ∼ Γ(shape=32.5425+1, intensity=8.5926+0.0918 α+0.1495τ),

after substituting the estimated choices of the hyperparameters in the conditional densities of α, τ and θ
given earlier. Then for the Bayesian analysis we consider the MCMC technique to draw samples from the
posterior distribution for each of the parameters and we provide the results in the table given below:

n Posterior Mean(α) Posterior Mean(τ) Posterior Mean(θ) Credible interval
100 2.9415 0.9643 1.46893 (0.1354,4.2795),(0.0365,1.8872),(0.3278,3.8654)
200 2.96312 0.9704 1.4817 (0.2534, 4.1629),(0.1247,1.7449),(0.2267, 3.2345)

Table 2: Bayesian estimates of the parameters.

The values in the last column of the table are Bayesian confidence interval(95) for α, τ and θ respectively.

9 Use of diffuse priors (or equivalently locally uniform priors)

The use of conditionally specified priors as mentioned in earlier section involves assessment of several hyper-
parameters which at times can be quite challenging. If we envisage a situation where our informed expert
does not have any knowledge (or in other words he or she is unable to provide plausible values) of conditional
means, variances or percentile functions as described in the suggested prior assessment approach. In such a
situation it is quite reasonable to use such values of hyperparameters which reflect ignorance or diffuseness
of prior information about the parameters. If our informed expert is unable to provide any information on
the conditional moments for his choice of prior then one might consider of using a locally uniform joint prior
which will correspond to the situation in which all the hyperparameters in (15) are set equal to zero.
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10 Concluding remarks

Precise inference under both classical and Bayesian paradigm for the parameters of hidden truncation models
is an area which still is in it’s infancy stage. Very recently Arnold and Ghosh (2011) have provided discussion
on Bayesian inference for trivariate hidden truncated Pareto(II) model with a diffuse prior set-up. Inarguably
the complicated form of the likelihood as in (12) is a warning that friendly conjugate priors will not be
encountered. As a consequence, little attention has been devoted in this direction. The output of the
associated Bayesian analysis for two different conditional set-up do provide a strong indication that although
the number of hyperparameters is high, the assessment problem is manageable, since the methods either
involve systems of linear equations in the hyperparameters or nonlinear equations in a single unknown. To
this end our procedure can also be extended for a more general Pareto (IV) distribution under the hidden
truncation paradigm. However needless to say, from the computational point of view this will be quite
challenging as there will be three additional parameters and with that the associated prior distributions
assumed for the model will have quite a large set of hyperparameters.
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