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Abstract 
The NASA has monitored the Antarctic ozone depletion referred to as the ozone hole, 
caused by manmade compounds, especially CFCs and BFCs, using satellite remote 
sensing instruments since the late 1970s. However, observations between December 1994 
and June 1996 are missing because the NASA remote sensors were not in the observation 
orbit. We first construct nonlinear SETAR models for two sub-series from January 1983 
to November 1994 and from July 1996 to December 2010. We then use the models to 
estimate the missing values using forward-forecasting, backward-forecasting, and the 
linear combination of forward-forecasts and backward forecasts. 
 
Key Words: nonlinear time series, SETAR model, missing value estimation, forward-
forecast, backward-forecast, forecasts-combining, ozone hole. 
 
 

1. Introduction 
 
Ozone (chemical formula: O3), consisting of three oxygen atoms chemically bound, has 
big effects on people’s health and the environment even though its amount is only 
0.00006 percent of the atmosphere. The effects can be good or bad, depending on its 
location in the atmosphere. The tropospheric ozone existing in about 0 – 10 km altitude is 
an air-pollutant which is harmful to breathe. On the other hand, the stratospheric ozone 
residing in about 10 – 50 km altitude, known as the ozone layer, is a good shield which 
protects life on Earth from intense ultraviolet (UV) solar radiation (EPA; NASA, 2012; 
NOAA).  
 
The first scientific research of ozone dates back to around 1840 when Christian F. 
Schönbein synthesized ozone in his laboratory. In the early twentieth century, the modern 
measurement of ozone was introduced by Fabry and Buisson (1913) and Dobson and 
Harrison (1926). A lot of new observations and discoveries of ozone over the past 
century help us understand the mechanism of ozone formation and destruction in the 
atmosphere. Especially, because of Molina and Rowland (1974)’s research on the 
chlorine-catalyzed ozone destruction and Farman, and Gardiner, and Shanklin (1985)’s 
report of large ozone reductions over Antarctica during spring of the Southern 
Hemisphere, it has been believed that man-made compounds such as chlorofluorocarbons 
(CFCs) and bromofluorocarbons (BFCs) are responsible for ozone depletion in the 
stratosphere (Solomon, 1999; Brönnimann et al, 2003; Rowland, 2006). 
 
The National Aeronautics and Space Administration (NASA) has also monitored ozone 
values over the entire south polar region using satellite remote sensing instruments, such 
as the Total Ozone Mapping Spectrometer (TOMS) and the Ozone Monitoring 
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Instrument (OMI), over last 30 years and mapped the Antarctic ozone hole which is 
defined as the area with total ozone below 220 Dobson units, equivalent to pure ozone 
2.2 millimeters thick at a temperature of 0 degrees Celsius and a pressure of 1 atmosphere. 
However, their satellite data from December 1994 to June 1996 are missing because the 
NASA program had no on-orbit capability during the 19 months (NASA, 2009). 
 
Figure 1 displays the monthly average size of the Antarctic ozone hole between January 
1983 and December 2010. It is clear that the ozone hole fluctuates seasonally; that is, the 
hole largely happens every spring from September through November, but it does not 
show up in other seasons. As shown in the figure, 19 observations between December 
1994 and June 1996 are missing. 
 
We first construct self-exciting threshold autoregressive (SETAR or TAR) nonlinear time 
series models for the two sub-series, one from January 1983 to November 1994 (143 
months) and the other from July 1996 to December 2010 (174 months). We then use 
these models to estimate the 19 missing observations using forward-forecasting 
(forecasting), backward-forecasting (backcasting), and forecasts-combining. 
 

 
Figure 1: Monthly average size of the Antarctic ozone hole between 1983 and 2010. 
 
 

2. Preliminary Study 
 
We split the original ozone hole series (OZ) into two partial series such as OZ1 for the 
series with 143 observations from January 1983 to November 1994 and OZ2 for the 
series with 174 observations from July 1996 to December 2010. Let Zt denote the original 
process of OZ, Z1,t be the first partial process of OZ1, and Z2,t be the second partial 
process of OZ2. 
  
First, we investigate the sample ACFs and the sample PACFs of the series OZ1 and OZ2. 
As shown in Figure 2, strong seasonal variations with seasonal period 12 were detected in 
the both series. So we consider seasonal differencing of the two series; that is W1,t = (1 – 
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B12)Z1,t denoting the seasonally differenced series of OZ1, say OZ1.s12, and W2,t = (1 –  
B12)Z2,t denoting the seasonally differenced series of OZ2, say OZ2.s12. 
 

 
Figure 2: Sample ACF and sample PACF of series OZ1 (left) and OZ2 (right). 
 
 

3. Model Building: Nonlinear SETAR Models 
 
We now employ the likelihood ratio test for threshold nonlinearity (Chan, 1991) and the 
arranged autoregression approach (Tsay, 1989; Tsay, 2010; Wei, 2006) to construct self-
exciting TAR models (Tong and Lim, 1980) for series OZ1 and series OZ2. 
 
3.1. Model Identification 
 
Step 1. Tentatively select the AR order. 
First, we select the maximum AR orders to be entertained for the two piecewise linear 
AR models. Here, we tentatively choose the AR order P1 = 13 for series OZ1.s12 and 
P2 = 13 for series OZ2.s12 because their AIC values are minimum in Table 1. 
 

  
Step 2. Searching for the delay parameter d and hence the threshold variables 
Wi,t–d, i = 1, 2. 
Let Di = {1, 2,…, Pi} be the set of possible delay lag of Wi,t–d, i = 1, 2. Then we fit the 
arranged autoregressions for the given Pi and every element di of Di, and perform the 
likelihood ratio test for threshold nonlinearity. The results of the threshold nonlinearity 
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Table 1:  The AIC values of the two linear AR(p) models of OZ1.s12 and OZ2.s12. 
 
Series p = 0 1 2 3 4 5 6 7 
OZ1.s12  74.1  35.5  36.5  37.9  39.8  41.8  43.8  45.8 
OZ2.s12 147.8  96.5  89.3  89.8  87.6  88.2  90.2  91.8 
Series p = 8 9 10 11 12 13 14 15 
OZ1.s12  47.8  49.6  46.1  28.1   8.3   0.0   1.5   3.2 
OZ2.s12  93.7  95.4  71.1  59.0  29.1   0.0   2.0   3.0 
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tests are summarized in Table 2. We choose d1 = 11 and d2 = 7 because they produce the 
largest test statistics and the smallest p-values respectively. Thus, W1,t–11 and W2,t–7 are the 
threshold variables of series OZ1.s12 and OZ2.s12, respectively. 
 

 
Step 3. Search for the threshold values. 
To search for the threshold values, we construct a scatterplot of the t-ratios of 11,1̂ , which 
denotes the recursive estimate of the lag-11 AR parameter in the arranged autoregression 
of series OZ1.s12, versus the ordered values W1,t–11 in the left panel of Figure 3. 
Similarly, the scatterplot of the t-ratios of 7,2̂ , which denotes the recursive estimate of 
the lag-7 AR parameter in the arranged autoregression of series OZ2.s12, versus the 
ordered values W2,t–7 is shown in the right panel of Figure 3. From the left plot, we see the 
t-ratio has a big drop and then an increase at W1,t–11 = 0.6, suggesting that we have a two-
regime model with the threshold value r1 = 0.6, i.e., a TAR(2; p1,1, p1,2; 11) model for 
series OZ1.s12. Similarly, in the right plot, the t-ratio has a big drop and then a convex-
upward increase at W2,t–7 = –0.07, indicating a two-regime model with the threshold value 
r2 = –0.07, i.e., a TAR(2; p2,1, p2,2; 7) model for series OZ2.s12. 
 
Step 4. Finally select the self-exciting threshold AR order 
We compare the AIC values of all possible models, TAR(2; p1,1, p1,2; 11) models for 
series OZ1.s12 and TAR(2; p2,1, p2,2; 7) models for series OZ2.s12, using setar 
function of tsDyn package in R and then find the AR order in each regime based on the 
minimum AIC value. The results lead to a TAR(2; 13, 11; 11) model for series OZ1.s12 
since the minimum AIC value is 215.233 when p1,1 = 13 and p1,2 = 11, and a TAR(2; 13, 
13; 7) model for series OZ2.s12 since the minimum AIC value is 281.590 when p1,1 = 
13 and p2,2 = 13. 
 

Table 2:  The summary of the threshold nonlinearity test of OZ1.s12 and OZ2.s12. 
 
Series d Test statistic p-value Series d Test statistic p-value 
OZ1.s12  1 33.72435 0.03467 OZ2.s12  1 24.34353 0.24539 
  2 28.28114 0.12637   2 23.62481 0.26913 
  3 39.27506 0.00701   3 24.90071 0.22681 
  4 36.36273 0.01667   4 28.77328 0.11281 
  5 33.32534 0.03853   5 34.96831 0.02442 
  6 34.41601 0.02877   6 32.71728 0.04460 
  7 44.14823 0.00148   7 46.43210 0.00068 
  8 31.93437 0.05503   8 27.83821 0.13651 
  9 33.27651 0.03903   9 18.91528 0.35877 
 10 28.34929 0.12462  10 36.12061 0.01765 
 11 49.36983 0.00025  11 26.37419 0.17909 
 12 22.99352 0.29224  12 41.39531 0.00357 
 13 23.84785 0.26459  13 35.77265 0.01949 
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Figure 3: Scatterplot (left) of recursive t-ratios of the lag-11 AR coefficient 11,1̂  versus 

ordered W1,t–11 and scatterplot (right) of recursive t-ratios of the lag-7 AR coefficient 7,2̂  
versus ordered W2,t–7. 
 
3.2. Parameter Estimation 
Now, we estimate parameter coefficients of the differenced series, Wi,t = (1 – B12)Zi,t, i = 1, 
2, for each model. The fitted model of the TAR(2; 13, 11; 11) is written as the forward 
form: 
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if  W1,t–11 < 0.6, 
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if  W1,t–11 ≥ 0.6, 

 
where the values in parentheses below the parameter estimates are the associated standard 
errors and )( j

ta , j = 1, 2, is a white noise series with mean zero and a constant variance. 
The numbers of observations are 95 and 23, and the residual variances are 3.067 and 
7.597, respectively. 
 
Similarly, we fit the TAR(2; 13, 13; 7) model and express it as the backward form: 
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if  W1,t+7 < –0.07, 
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if  W1,t+7 ≥ –0.07, 

 
where the values in parentheses below the parameter estimates are the associated standard 
errors and )( j

te , j = 1, 2, is a white noise series with mean zero and a constant variance. 
The numbers of observations are 58 and 91, and the residual variances are 4.647 and 
4.302 respectively. 
 
3.3. Diagnostic Checking 
We draw the diagnostic residual plots of the TAR(2; 13, 11; 11) model and the TAR(2; 
13, 13; 7) model, which are displayed in Figure 4. The residual ACFs of the two models 
show no significant peaks except at lag-0, and the Ljung-Box statistics are not significant 
at α = 0.05. So the diagnostic plots do not show any evidence that the residuals are not 
white noise. In other words, the TAR(2; 13, 13; 11) model for series OZ1.s12 and the 
TAR(2; 13, 13; 7) model for series OZ2.s12 are adequate. 
 

 
Figure 4: Diagnostic residual plots (left) for the TAR(2; 13, 11; 11) model and 
diagnostic residual plots (right) for the TAR(2; 13, 13; 7) model. 
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We also draw the fitted line of the forward form of the TAR(2; 13, 11; 11) model, the 
backward form of the TAR(2; 13, 13; 7) model, and their 95% confidence limits in 
Figure 5. The models fit quite well as most observations of the ozone hole series lie in the 
95% confidence limits. 
 

 
Figure 5: The fitted values for the TAR(2; 13, 11; 11) model, the TAR(2; 13, 13; 7) 
model, and their 95% confidence limits. 
 
 

4. Estimating Missing Observations 
 
4.1 Estimating the Missing Observations Using the TAR Models 
We now estimate the missing 19 observations from December 1994 to June 1996 using 
forward-forecasting from the TAR(2; 13, 11; 11) model of series OZ1.s12. These 19 
forward-forecasts for W1,144 = W144, …, W1,162 = W162, are as follows: 
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Next, we estimate the missing 19 observations from December 1994 to June 1996 using   
backward-forecasting from the TAR(2; 13, 13; 7) model. These 19 backward-forecasts 
for W2,–1 = W162, …, W2,–19  = W144, are computed as follows: 
 

,94.00.3840.6730.013
0.0880.0710.0580.0190.009

0.0500.0800.0360.0190.4110.098)1(ˆ

13,212,211,2

10,29,28,27,26,2

5,24,23,22,21,21,2







WWW
WWWWW

WWWWWW
 

 
since 07.000.07,2 W , 
⁞ 

 

,80.1)6(ˆ0.531

)7(ˆ0.832)8(ˆ0.217)9(ˆ301.0)10(ˆ0.100

)11(ˆ0.017)12(ˆ0.076)13(ˆ0.093)14(ˆ0.024

)15(ˆ0.026)16(ˆ0.193)17(ˆ0.446)18(ˆ1.0210.260)19(ˆ

1,2

1,21,21,21,2

1,21,21,21,2

1,21,21,21,21,2









W

WWWW

WWWW

WWWWW

 
 

since 07.025.2)12(ˆ
1,2 W , 

 
4.2. Combinations of the forward-forecasts and the backward-forecasts 
Since a linear combination of two estimations outperforms either of them (Granger and 
Ramanathan, 1984), we combine the forward-forecasts and the backward-forecast to 
obtain third estimations for these missing values using the weighted average technique of 
Bates and Granger (1969). 
 
Let )(

1
iFT  be an unbiased i step forward-forecast at time T1 and )(

2
jBT  be an unbiased j 

step backward-forecast at time T2 where T2 – T1 = i + j – 1. The combined forecast C(T1 + 
i) at time T1 + i or C(T2 – j) at time T2 – j is given by 
 

)()()1()()(
2121 jkBiFkjTCiTC TT   

 
where the optimal weight )/( 222

BFFk   with the forward-forecast variance 2
F  and 

the backward-forecast variance 2
B  assuming the forward-forecast error and the 

backward-forecast error are not correlated. The residual variances of the forward model 
and the backward model can be used instead of 2

F  and 2
B  (Balakrishnan, 2010). 

 
Here we convert the estimations of Wi,t to the estimations of Zi,t using the relation 

titi ZBW ,
12

,
ˆ)1(ˆ  , or equivalently, 12,,,

ˆˆˆ
 tititi ZWZ , i = 1, 2. Then we apply the 

combination method to 19 forward-forecasts of series OZ1 and 19 backward-forecasts of 
series OZ2. We remark that there are four optimal weights because of two sub-models in 
the forward model and two sub-models in the backward model. 
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Table 3, Figure 6, and Figure 7 present the three types of estimations—forward-forecasts, 
backward-forecasts, and their combinations for the 19 missing observations of the 
monthly series of the Antarctic ozone hole size between 1983 and 2010. 
 

 

 
Figure 6: Monthly observations and estimations of the missing values from forward-
forecasts and backward-forecasts of the Antarctic ozone hole series between 1983 and 
2010. 
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Table 3:   Estimations of the 19 missing observations for the ozone hole series, between 
December 1994 and June 1996. 

 
Date Forecasts Backcasts Combinations 
Dec.1994   1.83   2.75   2.20 
Jan.1995   0.41   1.43   0.82 
Feb.1995   0.50   0.24   0.40 
Mar.1995   0.44   0.82   0.68 
Apr.1995  -0.87   1.38   0.02 
May.1995   0.64   1.77   1.09 
Jun.1995   0.00   1.75   0.69 
Jul.1995   1.63   2.32   1.92 
Aug.1995   4.61   9.50   7.73 
Sep.1995  24.09  21.87  22.67 
Oct.1995  28.57  22.27  25.95 
Nov.1995  16.38  12.81  14.10 
Dec.1995   9.24   0.96   5.79 
Jan.1996   3.06  -0.52   1.57 
Feb.1996   1.12   0.47   0.85 
Mar.1996   1.39   0.09   0.87 
Apr.1996   0.44   0.60   0.51 
May.1996   0.60   0.75   0.66 
Jun.1996   0.36   1.18   0.89 
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Figure 7: Monthly observations and the combining estimation of the missing values of 
the Antarctic ozone hole series between 1983 and 2010. 
 
From Table 3, Figure 6, and Figure 7, we see that the forward-forecasts and the 
backward-forecasts produce similar stochastic trends even though the forward-forecasts 
estimate a larger ozone hole in spring of 1995. We also notice that they produce negative 
hole sizes in April 1995 and January 1996, respectively. However, the negative 
estimations disappear when linear combinations of the forward-forecasts and the 
backward-forecasts are used. 
 
 

5. Conclusion 
 
In this research, we estimated the 19 missing observations of the Antarctic ozone hole 
size series between December 1994 and June 1996 using the SETAR modeling of the two 
available sub-series. As shown above, the forward-forecasts and the backward-forecasts 
show similar stochastic trends, in general. 
 
The combinations make the forecasts moderate; for example, the estimated large hole 
size from the forward-forecast in spring 1995 have been moderated when the combining 
method is used.  Also, estimated negative hole sizes, from the forward-forecast in April 
1995 and the backward-forecast in January 1996, disappear through the use of combining 
forecasts. The results suggest that the linear combination of forecasts provides good 
estimations for the missing observations of the Antarctic ozone hole size series. 
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