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Abstract 
The paper discusses some of the applications of the generalized Poisson regression model 
and its various forms of modifications to grouped data, censored data, truncated data and 
inflated data. Some tests to discriminate between the generalized Poisson regression 
model and its competitors are reviewed. 
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1. Introduction 
In count data regression analysis, the dependent variable is a count where we assume a 
discrete distribution error structure. The independent variables could take any form 
(discrete or continuous). In the linear regression analysis, we assume that the error terms 
have normal distribution. Here, this assumption is not made since the response variable is 
nonnegative. 
 
The Poisson distribution has been applied in the context of regression analysis for 
describing count data where the sample mean and sample variance are almost equal [See 
Cameron and Trivedi (1998) and the references there in.] In many situations, count data 
are over-dispersed or under-dispersed. Over-dispersion relative to the Poisson is when the 
sample variance is substantially in excess of the sample mean. Under-dispersion is a 
situation in which the sample variance is less than the sample mean. Many regression 
models have been suggested to deal with over-dispersion or under-dispersion. Among 
these various models are the negative binomial regression model defined and studied by 
Lawless (1987) and the generalized Poisson regression model studied by Famoye (1993). 
 
Suppose that 1 2, , , ny y y  are the independent responses, with discrete distribution. A 
general count regression model can be written as ( ) ( ) ( , )i i i iE Y x c f xµ β= = , i = 1, 2, 
…, n, where ic  is a measure of exposure, 1 2 1(1, , , , )i px x x x −=   is a px1 vector of 

independent variables, ( , )if x β  is a differentiable function of p-dimensional vector 

0 1 2 1( , , , , )pβ β β β β −=   of regression parameters. For count regression model, we can 

write ( ) iX
ix e βµ ′= . Hence, taking natural logarithm, we have 

  log[ ( )]i ix Xµ β′= ,  (1) 
where the jβ , j = 0, 1, 2, …, p – 1 is the parameter which represents the expected change 

in the log of the mean per unit increase (or decrease) in the explanatory variable jx . The 
model in (1) is often referred to as a count regression model. It is a generalized linear 
model with link function ( )g x , where, ( ) log( )g x x= . 
 
In this paper, we will briefly mention the Poisson regression model, discuss the 
generalized Poisson regression and some of its modifications to model count data. 
Finally, we mention two comparison tests for non-nested models. 
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2. Poisson regression model 
The Poisson distribution is perhaps the most used discrete distribution because of its 
simplicity. The Poisson probability mass function is given by 
  ( ) / !yP Y y e yθθ −= = , y = 0, 1, 2, … (2) 
The mean and variance of the model in (2) are equal to θ . 
 
Thus, for Poisson regression, we have 
  0 1 1 1 1( ) ( ) ( , ) p px xx

i i i iE Y x c f x e eβ β ββµ β − −+ + +′= = = =  . 
Hence, the Poisson regression model is 
  ( )( | ) [ ( )] / !i iy x

i i i iP Y y x x e yµµ −= =  for iy  = 0, 1, 2, … (3) 
The mean and variance of the Poisson regression model in (3) are equal to ( )ixµ . The 
parameters β  can be estimated by the method of maximum likelihood estimation. 
 
Limitation: 
The Poisson regression model is adequate for data where mean and variance are about 
equal. The Poisson distribution is said to be equi-dispersed since the mean and variance 
are equal. Suppose this is not the case, one needs to use a different model that can handle 
the type of dispersion. 
 
Over-dispersion in Poisson regression: 
When over-dispersion occurs, the standard errors of the parameter estimates are often 
underestimated and this often leads to wrong conclusions with regards to the significance 
of the predictor variables. Over-dispersion often arises when modeling count data. 
Suppose the outcome iY  has a Poisson distribution with mean µ . Then, V( iY ) = E( iY ) = 

µ . Suppose however, that the variance is proportional to the mean, say, V( iY ) = ϕ E( iY ) 
= ϕµ ; where ϕ  is to be estimated from our data. There is no dispersion when ϕ  = 1. 
We observe that over-dispersion occurs when ϕ  > 1, while under-dispersion occurs 
when 0 < ϕ  < 1. 
 
What may give rise to over-dispersion? 
Over-dispersion in Poisson regression could arise as a result of several reasons or 
combinations of reasons. Over-dispersion in Poisson regression may be caused by 
positive correlation between the count responses or large variations between count 
responses. Hilbe (2007) addressed real over-dispersion and apparent over-dispersion. 
Among the causes of over-dispersion, Hilbe (2007) stated the following: 
Real over-dispersion- 

• Positive correlation between the counts or excess variation between the counts. 
• Violations in the distributional assumptions of the count data. 

Apparent over-dispersion- 
• The model omits important explanatory variables. 
• The data include outliers. 
• The model fails to include a sufficient number of interaction terms. 
• A predictor variable needs to be transformed. 
• The link function is miss-specified. 
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3. Generalized Poisson regression model 
The probability mass function for the generalized Poisson distribution (GPD) is given by 
  1 (1 )( ) (1 ) / !y y yP Y y y e yθ αθ α − − += = + , y = 0, 1, 2, … (4) 
The GPD in (4) was defined and studied by Consul (1989). The parameter θ  > 0 and the 
parameter α can be negative or positive. The mean and variance of the GPD in (4) are 
respectively given by / (1 )µ θ αθ= −  and 2 3/ (1 )σ θ αθ= − . Suppose the mean of the 
GPD depends on some independent variables ix , then we can write 
  ( ) / (1 ) ( ) / [1 ( )]i i ix a x a xµ θ θ θ µ µ= − ⇒ = + . 
Thus the generalized Poisson regression (GPR) model can be written as 

 
( ) 11( ) ( )(1 )( | ) ( ) exp

1 ( ) ! 1 ( )

i iy y
ii i i

i i i
i i i

yx x yP Y y x f y
x y x

αµ µ α
αµ αµ

−+   − +
= = =    + +   

,  

 iy  = 0, 1, 2 … (5) 
The mean and variance of the generalized Poisson regression model are respectively 
given by E( ) ( )iY xµ=  and 2V( ) ( )[1 ( )]i iY x xµ αµ= + . The GPR model reduces to the 
Poisson regression model when α = 0 and the dispersion factor is given by V( iY )/E( iY ) = 

2(1 )iαµ+ . If α > 0, then V( iY ) > E( iY ) and the GPR will model count data with over-
dispersion. Similarly, when α < 0, then V( iY ) < E( iY ) and the GPR will in this case 
model under-dispersed count data. 
 
Famoye (1993) applied the GPR in (5) to model the number of faults in rolls of fabric, an 
over-dispersed count data. Wang & Famoye (1997) considered the GPR model for under-
dispersed data on household fertility decisions. The response variable in this application 
is the number of children up to age 17 years old in a family. 
 
4. Modified generalized Poisson regression model 
Examples of data for which modified GPR model can be applied include inflated count 
data, truncated count data, censored count data, and grouped or categorized count data. 
 
Inflated generalized Poisson regression model: 
Over-dispersion in a Poisson model can also arise as a result of too many occurrences of 
zeros than would normally be expected from a Poisson model. That is, there could be too 
many zeros than can be assumed theoretically or expected under such model. If this 
happens, we would then say that the Poisson model is in this case, zero inflated. In some 
cases, these zeros can be structural zeros in which it is impossible to observe an 
occurrence. For instance, in a survey to determine the number of bottles of alcohol 
consumed by respondents per week, there would be individuals in the sample who do not 
drink alcohol at all. Such people will have the number recorded as zeros but in actual 
fact, such zeros will be structural as we naturally do not expect them to have a count. On 
the other hand, if an individual does drink alcohol but he/she did not drink a single bottle 
of alcohol during the survey period, then such individuals would have a count of zero and 
the zeros in this case would be referred to as sampling zeros. 
 
In general, the inflation could occur at any point y = k. Famoye and Singh (2003) 
proposed a k-inflated generalized Poisson regression (k-IGPR) to model count data with 
too many k-values. A score test is presented to test whether the number of k-values is too 
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large for the generalized Poisson regression model to adequately fit the data. The k-
inflated generalized Poisson regression model is illustrated using a dataset with too many 
ones. 
 
A k-inflated generalized Poisson regression (k-IGPR) model is defined as 

  
(1 ) ( ; , ),

( | , )
(1 ) ( ; , ), ,

i i i i
i i i

i i i i

f k y k
P Y y x z

f y y k
ϕ ϕ µ α

ϕ µ α
+ − =

= =  − ≠
  (6) 

where ( ; , ) ( )i i if y f yµ α = , iy  = 0, 1, 2, … is the GPR model in (5) and 0 < iϕ < 1. The 
model in (6) will allow for a decreasing proportion of k-values if 

1( ; , )[1 ( ; , )]i if k f kµ α µ α −− −  < iϕ < 1. In model (6), the functions ( )i i ixµ µ=  and 

( )i i izϕ ϕ=  satisfy 1log( ) k
i j ij jxµ β== Σ  and ( )logit( ) log / (1 )i i iϕ ϕ ϕ= −  1

m
j ij jz δ== Σ  

where 1 2 3( 1, , ,..., )i i i i imz z z z z= =  is the ith row of covariate matrix Z and 

1 2( , ,..., )mδ δ δ=δ  are unknown m-dimensional vector of parameters. In this set up, the 
functions iϕ  and iµ  are, respectively, modeled via logit and log link functions. Both are 
linear functions of some covariates. 
 
Suppose we have *E( )iY µ=  and 2

*V( )iY σ=  for the non-inflated model, then the mean 
and variance of the k-inflated GPR model can be written as *E( ) (1 )i i iY kϕ ϕ µ= + −  and 

2 2 2 2
* * *V( ) (1 )( ) [ (1 ) ]i i i i iY k kϕ ϕ µ σ ϕ ϕ µ= + − + − + −  respectively. The mean and 

variance of the k-IGPR model in (6) are given, respectively, by 
  E( | ) (1 ) ( )i i i i i iY x k xϕ ϕ µ= + − ,  (7) 
and 
  [ ]22 2 2V( | ) (1 ) (1 ) (1 )i i i i i i i i i iY x k kϕ ϕ µ µ αµ ϕ ϕ µ = + − + + − + −    

  = 2 2(1 )( ) (1 ) (1 )i i i i i ikϕ ϕ µ ϕ µ αµ− − + − + .  (8) 
 
When k = 0, the above results for the k-inflated GPR model reduce to those given by 
Famoye and Singh (2006) for the zero-inflated generalized Poisson regression model. 
The k-inflated GPR model reduces to the GPR model when iϕ  = 0. It reduces to the k-
inflated Poisson regression model when α = 0. For positive values of iϕ , it represents the 
k-inflated generalized Poisson regression model and for negative values of iϕ , it 
represents k-deflated generalized Poisson regression model. The k-deflation cases rarely 
occur in practice. 
 
The covariates affecting iϕ  and iµ  may or may not be the same. If one does not know 
the covariates that may affect iϕ  one can fit a constant function with 

1 1 1logit( )i izϕ δ δ= = . If iy  are independent random variables having a k-inflated 
generalized Poisson distribution, the k-values are assumed to occur in two distinct states. 
The only occurrences in the first state are k-values which occur with probability iϕ . 
These can be referred to as ‘structural’ k-values. The second state occurs with probability 
(1 )iϕ−  and leads to a generalized Poisson distribution with parameters α and iµ . The k-
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values from the second state, i.e. from the generalized Poisson distribution, can be called 
‘sampling’ k-values. The two-state process leads to a two-component mixture distribution 
with probability mass function given in (6). 
 
The zero-inflated generalized Poisson regression model is defined (Famoye and Singh, 
2006) as a good alternate to model count data with too many zeros. A zero-inflated 
discrete model has the probability function of the form 

   
(1 ) (0), 0

( )
(1 ) ( ), 0,

i
i i

i i

f y
P Y y

f y y
ϕ ϕ

ϕ
+ − =

= =  − >
   (9) 

where ( )if y  is the generalized Poisson distribution in (5) and 0 1ϕ≤ < . From (7) and 
(8), the mean and variance of the zero-inflated GPR model are E( ) (1 )i iY ϕ µ= −  and 

2V( ) (1 ) [(1 ) ]i i i iY ϕ µ αµ ϕµ= − + + . Famoye and Singh (2006) proposed the zero-
inflated GPR in (9) to model domestic violence data with too many zeros. 
 
Zero-truncated generalized Poisson regression model: 
The zero-truncated regression models arise in those situations where there is no zero by 
nature of the data. An example for instance is the length of stay at a hospital. Once you 
are admitted, it is deemed that you have spent at least one day in the hospital. Thus the 
zeros cannot be observed in this case for all patients admitted into the hospital. For a 
random variable Y with a discrete distribution, where the value of Y = 0 cannot be 
observed, then the zero-truncated random variable tY  has the probability mass function 
  ( ) ( ) / ( 0)tP Y y P Y y P Y= = = > , y = 1, 2, 3, … (10) 
 
For the zero-truncated Poisson, with parameter µ ; ( 0) 1 ( 0) 1P Y P Y e µ−> = − = = − . 
Hence, the probability mass function of zero-truncated Poisson random variable tY  is 

  ( )
!(1 )

y

t
eP Y y

y e

µ

µ

µ −

−= =
−

, y = 1, 2, 3, … (11) 

Note that the mean of zero-truncated Poisson model is not equal to µ , it is actually 

/ (1 )e µµ −− . Thus, if µ  is the mean of an un-truncated model, the mean of a zero-
truncated model is given by / ( 0)P Yµ > . The variance of zero-truncated Poisson model 
is 
  2 2V( ) / (1 ) / (1 ) E( )Y e e e Yµ µ µµ µ− − −= − − − < . 
Hence, a truncated Poisson model is always under-dispersed. 
 
The probability mass function for the zero-truncated generalized Poisson distribution can 
be similarly defined to obtain 

  
1 (1 )(1 )( )

!(1 )

y y y

t
y eP Y y

y e

θ α

θ

θ α − − +

−

+
= =

−
, y = 1, 2, 3, … 

The mean and variance of zero-truncated generalized Poisson distribution are, 
respectively,  

1 1E( ) (1 ) (1 )tY e θθ αθ − − −= − −   

and 3 1 2 2 2V( ) (1 ) (1 ) (1 ) (1 )tY e e eθ θ θθ αθ θ αθ− − − − − − −= − − − − − . 
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The truncated generalized Poisson distribution can be used in count data regression when 
the data is truncated at point zero. One can show that the truncated model satisfy the 
properties of over-, equi-, and under-dispersion. One can assume that the parameter θ  is 
a function of the predictors ix . 
 
Censored generalized Poisson regression model: 
For some observations in a data set, the value of iY  may be censored. If no censoring 
occurs for the ith observation, i iY y= . However, if censoring occurs for the ith 
observation, we know that iY  is at least equal to iy  i.e. i iY y≥ . We now have 

  
1

0
( ) ( ) ( , ) 1 ( , ) ( , )

i

i i

y

i i i i i
j y j y j

P Y y P Y j f j f j P jµ µ µ
−∞ ∞

= = =

≥ = = = = − =∑ ∑ ∑ , (12) 

where ( , ) ( )i i if y f yµ =  is the ordinary GPR model defined in (5). 
 
Define an indicator variable id  as 

   
1,
0, otherwise.

i i
i

Y y
d

≥
= 


   (13) 

The likelihood function of censored generalized Poisson regression (CGPR) model is 

  1

1

( , ) [ ( , )] [ ( , )]i i

n
d d

i i i i i
i

L y f y P yβ µ µ−

=

=∏ .  (14) 

One can take the log-likelihood and use it to find the maximum likelihood estimates. 
 
When α  = 0 and the condition i iY y≥  in (13) is replaced with iY C≥ , where C is a 
constant, the result in (14) reduces to censored Poisson regression (Terza, 1985) with a 
constant censoring threshold. Terza (1985) pointed out that this kind of censoring may be 
imposed on the data by survey design, or it may reflect some theoretical or institutional 
constraints. If α  = 0 and the condition i iY y≥  in (13) is replaced with say ix C≥  or 

ix C≤  (where ix  is an explanatory variable) the result in (14) reduces to censored 
Poisson regression (Caudill and Mixon, 1995) with variable censoring thresholds. 
 
Wang and Famoye (1997) analyzed a data set on fertility from Michigan Panel Study of 
Income Dynamics (PSID). PSID is a large national longitudinal data set that began in 
1968 with approximately 5500 households. The sample has been followed each year 
since 1968. From the wave in 1989 interviewing year, Wang and Famoye (1997) selected 
married women aged between 18 and 40 who are not head of households and with 
nonnegative family income. With this restriction, only 1954 married women were used in 
the analysis. For the purpose of illustrating censored generalized Poisson regression 
(CGPR) model in the paper, the restriction on age was dropped and this led to a sample of 
2936 married women. The dependent variable, the total number of children up to 17 years 
old in a family, is a nonnegative integer ranging from zero to nine in the sample. 
 
The mean 1.2922 and variance 1.5016 of the dependent variable are somehow close. This 
suggests that the data may be equi-dispersed and thus either the Poisson regression model 
or the GPR model will be adequate for analyzing the data. The purpose of this example is 
to demonstrate censoring and not to show which independent variable is significant. 
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Table 1: Parameter estimates for Poisson and censored Poisson regression 

  Poisson model  Poisson model for  Censored Poisson  
  for complete data  truncated data  for censored data 
 Parameter yi = 0, 1, …, 9  yi = 0, 1, 2, 3, 4  yi = 0, 1, 2, 3, 4 
 β0  2.0686 ± 0.1511  2.0200 ± 0.1520  2.0711 ± 0.1528 
 β1  –0.2657 ± 0.0356  –0.2524 ± 0.0359  –0.2629 ± 0.0360 
 β2 –0.0193 ± 0.0041  –0.0181 ± 0.0041  –0.0177 ± 0.0041 
 β3  –0.1226 ± 0.0651  –0.0974 ± 0.0655  –0.1055 ± 0.0656 
 β4  –0.2811 ± 0.0379  –0.2729 ± 0.0382  –0.2846 ± 0.0382 
 β5  0.3057 ± 0.0575  0.2973 ± 0.0576  0.3026 ± 0.0577 
 β6  –0.0050 ± 0.0087  –0.0037 ± 0.0088  –0.0051 ± 0.0088 
 β7  0.0035 ± 0.0071  0.0016 ± 0.0072  0.0023 ± 0.0072 
 β8  –0.0143 ± 0.0187  –0.0135 ± 0.0188  –0.0132 ± 0.0188 
 β9  –0.0211 ± 0.0038  –0.0225 ± 0.0039  –0.0230 ± 0.0039 
 β10  –0.0147 ± 0.0066  –0.0149 ± 0.0066  –0.0154 ± 0.0067 
 β11  0.0118 ± 0.0078  0.0130 ± 0.0078  0.0129 ± 0.0079 
 β12  –0.0545 ± 0.0340  –0.0545 ± 0.0342  –0.0593 ± 0.0342 
 Pearson χ2  2936.78  2781.22  2752.82 
 Log-likelihood  –4039.00  –3990.55  –3992.00 
 
 

Table 2: Parameter estimates for GPR and censored GPR models 
  GPR model for GPR model for  Censored GPR 
  complete data  truncated data  for censored data 
 Parameter yi = 0, 1, …, 9  yi = 0, 1, 2, 3, 4  yi = 0, 1, 2, 3, 4 
 β0 2.0549 ± 0.1488  1.9745 ± 0.1430  2.0542 ± 0.1510 
 β1  –0.2665 ± 0.0350  –0.2554 ± 0.0336  –0.2620 ± 0.0353 
 β2 –0.0188 ± 0.0041  –0.0166 ± 0.0039  –0.0173 ± 0.0041 
 β3 –0.1228 ± 0.0643  –0.0976 ± 0.0624  –0.1048 ± 0.0648 
 β4 –0.2797 ± 0.0371  –0.2680 ± 0.0355  –0.2822 ± 0.0375 
 β5 0.3047 ± 0.0567  0.2935 ± 0.0552  0.3010 ± 0:0570 
 β6 –0.0054 ± 0.0086  –0.0049 ± 0.0083  –0.0054 ± 0.0087 
 β7 0.0034 ± 0.0070  0.0015 ± 0.0067  0.0022 ± 0.0071 
 β8 –0.0139 ± 0.0183  –0.0121 ± 0.0176  –0.0129 ± 0.0185 
 β9 –0.0211 ± 0.0038  –0.0223 ± 0.0037  –0.0229 ± 0.0038 
 β10 –0.0146 ± 0.0065  –0.0147 ± 0.0064  –0.0152 ± 0.0066 
 β11 0.0118 ± 0.0077  0.0130 ± 0.0074  0.0129 ± 0.0077 
 β12 –0.0541 ± 0.0334  –0.0567 ± 0.0321  –0.0587 ± 0.0336 
 α  –0.0117 ± 0.0096  –0.0404 ± 0.0096  –0.0115 ± 0.0111 
 Pearson χ2  2933.37 2769.96 2751.80 
 Log-likelihood –4038.29 –3982.93 –3988.39 
 
Famoye and Wang (2004) used both the Poisson regression and generalized Poisson 
regression (GPR) models to analyze the complete data set without any censoring. About 
4.22% of the samples have dependent variable 4iy ≥ . To see the effects of censoring on 
the data, they took the values of all iy ’s greater than or equal to 4 to be exactly equal to 4 
(Truncated data). The new data was analyzed by using both the standard Poisson 
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regression and standard GPR models. In the analyses, the complete data was assumed to 
have iy  = 0, 1, 2, 3, 4. Finally, all values of 4iy ≥  were considered as censored and 
censored Poisson regression and CGPR models were applied to fit the data. The 
parameter estimates with their standard errors under the Poisson and censored Poisson 
regression models are presented in Table 1. The corresponding results for the GPR and 
CGPR models are given in Table 2. 
 
Column 2 of Tables 1 and 2 contains the parameter estimates when the complete data (i.e. 

iy  = 0, 1, 2, …, 9) is analyzed. The parameter estimates in column 3 of the tables are the 
results obtained after setting all values of 4iy ≥  to 4 and analyzing the truncated data 
with ordinary Poisson regression and ordinary GPR models. The estimates in columns 2 
and 3 are somehow different especially for the GPR model in Table 2. The results in 
column 4 represent the estimates from censored Poisson regression and CGPR models. 
The estimates in column 4 are much closer to the results in column 2. The implication is 
that analyzing the truncated data without taking into consideration the censoring will lead 
to inefficient estimates. The asymptotically normal Wald type “t”-values for testing the 
significance of parameter α  in CGPR are respectively −1.22, −4.19, and −1.04 for 
columns 2, 3, and 4. It is interesting to note that parameter α  is significant only in 
column 3. Thus, the complete data and the truncated data gave conflicting results when 
standard regression models are used for analysis whereas the complete data and the 
censored data gave similar results when censored models are used to analyze the 
censored data. This analysis supports the point that censoring should be taken into 
consideration when a censored data is used. 
 
Categorized generalized Poisson regression model: 
Basu and Famoye (2004) suggested a count data model for the number of violent 
incidents and it is given by 
  ( , , )i i i iy g w z eβ= + , i = 1, 2, 3, …, n, (15) 
where iy  is the number of violent incidents encountered by the ith person over a time 
period, wi is the set of economic variables such as income of individual i, zi is the set of 
non-economic variables such as age of individual i, β is a vector of unknown parameters 
and ei is an unobservable disturbance term. One can assumed that iy , the number of 
violent incidents, is a generalized Poisson random variable in (5), and the expected 
number of violent incidents is given by 
 = E( | ) exp( )i i i iY x Xµ β′= , (16) 

where xi is the vector of explanatory variables ( , )i iw z . 
 
The data analyzed by Basu and Famoye (2004) are grouped (or categorized) for values of 

3iy ≥ . A substantial amount of information in a data set is lost when some categories (or 
groups) are combined. To analyze categorized (grouped) dependent variable, one should 
specify all category probabilities based on the regression model. Suppose the count 
dependent variable iy  is partitioned into s categories with probabilities ijP , i = 1, 2, …, 
n,  j = 1, 2, …, s, where 

 Pr( ) ( , ),   1,  2,  ...,  1,
j

j

u

ij j i j i
r l

P l y u f r j sµ
=

= ≤ ≤ = = −∑  
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and  

 
1

0
Pr( ) 1 ( , )

su

is i s i
r

P y l f rµ
−

=

= ≥ = −∑ . 

Define an indicator variable ijd  as 

 
th1,  if the  is in the  category

0, otherwise.
i

ij
y j

d


= 


 

The log-likelihood function for categorized generalized Poisson regression model can be 
written as 

  
1 1

log ( , ;  ) log .
n s

i ij ij
i j

L y d Pα β
= =

=∑∑    (17) 

The dependent variable, the total number of violent incidents of husband to wife, is 
partitioned into the seven categories iy  = 0, iy  = 1, iy  = 2, 3 ≤  iy  ≤  5, 6 ≤  iy  ≤  10, 
11 ≤  iy  ≤  20, and iy  ≥  21. This partition is the same as the coding in the observed 
data. 
 
The data used in this paper are from the Department of Justice’s National Crime Survey 
(ICPSR 7733), which is explained in Straus and Gelles (1976). In the analysis the 
dependent variable, violence, represents the number of violent behavior of husband 
towards wife over one year period. The seven independent variables in Table 3 are 
conflict (a conflict index), depend (an economic dependence index), agediff (the age 
difference between the partners), years (total number of years married or living together), 
income (the total family income before taxes) and education difference, which is 
husband’s education level minus the wife’s education level. The education difference is 
categorized into three levels ‘less than zero – wife is more educated’, ‘zero – couples 
have the same education’, and ‘more than zero – wife is less educated’. Two dummy 
variables are used to represent education difference. The dummy variables are wife_l (the 
wife is less educated) and wife_m (the wife is more educated). More information on these 
variables can be found in Basu and Famoye (2004). 
 
Table 3: Effects of Economic Dependence on Incidents of Violence- Comparison among 
ordinary Poisson, ordinary GPR, and categorized GPR 
  Ordinary Poisson Ordinary GPR Censored GPR 
Variable  Estimate ±  se Estimate ±  se Estimate ±  se 
Constant 1.3984± .1059* 0.8202± .5618 0.9879± .6864 
Conflict 0.8937± .0239* 1.1239± .1558* 1.2445± .1889* 
Dependence 0.0595± .0161* 0.1539± .0990 0.1991± .1170 
Age difference –0.0014± .0047 –0.0486± .0224* –0.0633± .0269 
Wife is less educated 0.0875± .0399* –0.1935± .2194 –0.0797± .2619 
Wife is more educated –0.2090± .0497* –0.8023± .2416* –0.8118± .2809* 
Years living together –0.0648± .0021* –0.0758± .0090* –0.0880± .0107* 
Income –0.3032± .0069* –0.2676± .0372* –0.2952± .0440* 
Alpha (α)  2.6272± 0.1681* 2.7049± 0.1797* 
Log-likelihood –6155.74 –1864.09 –1462.65_____ 
* significant at 0.05 
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In Table 3, the dispersion parameter is positive and significant, indicating that ordinary 
Poisson regression model is not appropriate. In comparing the log-likelihood values for 
the ordinary Poisson, ordinary GPR and categorized GPR in Tables 3, we notice that the 
categorized GPR has the best (largest) value and hence, categorized GPR is the most 
appropriate model to apply to fit the number of violent incidents. In ordinary generalized 
Poisson regression model, the values 4, 8, 15, and 25 are respectively used for the classes 
3-5, 6-10, 11-20, and 21+. In categorized GPR model, the probabilities of all values in 
each category are taken into account during estimation. Thus, a categorized model is 
more accurate and provides a better fit to the data. 
 
5. Comparison tests for non-nested models 
In this section, we wish to compare model ( )if y  with model ( )ig y . Given two 
regression models, we consider the hypothesis 
   0 :H  model ( )if y  and model ( )ig y  are equivalent (18) 
against 
   :fH ( )if y  is better than ( )ig y  or :gH ( )ig y  is better than ( )if y . (19) 

The likelihood ratio statistic for testing model ( )if y  against model ( )ig y  is defined as 

   *
1

( )log
( )

n
i

i i

f yL
g y=

 
=  

 
∑ .   (20) 

If the two models ( )if y  and ( )ig y  are nested, the statistic in (20) will follow a chi-
square distribution. If the two models are not nested, the statistic in (20) is not chi-square 
distributed. 
 Vuong (1989) used the Kullback-Liebler Information Criterion to discriminate 
between two non-nested models. To test the null hypothesis 0H  in (18), Vuong proposed 
the test statistic 

   *
* ˆ

LZ
nω

= ,  (21) 

where 
2 2

2

1 1

( ) ( )1 1log log
( ) ( )

n n
i i

i ii i

f y f y
n g y n g y

ω
= =
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∑ ∑ , is an estimate of the variance 

of * /L n . For a non-nested model, Vuong (1989) showed that *Z  is approximately 
standard normal distributed under the null hypothesis that models ( )if y  and ( )ig y  are 
equivalent. At significant level α, the null hypothesis is rejected in favor of gH  if *Z  < –

/ 2zα  and the null hypothesis is rejected in favor of fH  if *Z  > / 2zα . However, if | *Z | ≤  

/ 2zα , we fail to reject the null hypothesis. Thus, we are unable to say that models ( )if y  
and ( )ig y  are not equivalent. 
 
Clarke (2007) proposed a non-parametric alternative to the Vuong’s test. The test by 
Clarke is distribution-free and it is based on a modified paired sign test on the differences 
in the individual log-likelihood values from the two non-nested models ( )if y  and 

( ).ig y  The null hypothesis of this non-parametric test is equivalent to 
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Thus, about half the log-likelihood ratios should be greater than 0 and half should be less 
than 0. The test statistic is based on the number D+  of positive differences between the 
log-likelihood values where D+  is binomial distributed with parameter n and probability 
0.5 under the null hypothesis. 
 
While the Clarke’s test determines whether the median log-likelihood ratio is statistically 
different from zero, the Vuong’s test determines whether the average log-likelihood ratio 
is statistically different from zero. Since D+  is binomial under 0H , we have 

( ) / 2E D n+ =  and ( ) / 4V D n+ = . If model ( )if y  is better than model ( )ig y , D+  
will be significantly greater than n/2, its expected value under 0H . To test the null 
hypothesis in (18) against the alternative in (19) at significant level α , we compute the 
numbers D+  of positive and D−

 of negative differences between the log-likelihood 
values. Then, we compute the p-values for both D+  and D− . If the p-value for D+  is 
below / 2α , we reject 0H  in favor of model ( )if y  is better than model ( )ig y . 

However, if the p-value for D−  is below / 2α , we reject 0H  in favor of model ( )ig y  is 

better than model ( )if y . When both p-values for D+  and D−  exceed / 2α , we fail to 
reject the null hypothesis of equivalence. 
 
According to Clarke (2007), the Vuong’s test considers the degree to which the log-
likelihood ratio exceeds zero. However, the distribution-free test does not consider the 
degree to which the log-likelihood ratio exceeds zero, but only if the ratio is positive or 
negative. Thus, some valuable information may be ignored by the distribution-free test. 
 
Famoye (2011) used the Clarke’s test to compare some bivariate regression models and 
noticed that the Clarke’s test may be too sensitive since it only counts the number of 
positive and negative differences. It is quite possible that the Clarke’s test may be highly 
significant when the log-likelihood values from the two comparison models are about the 
same. As an illustration, Famoye (2011) selected one of the data sets that were generated 
for n = 100. The data is examined further on the behavior of Vuong’s test and Clarke’s 
test. After fitting the data to all the bivariate models, the log-likelihood statistics are 

560.69−  for bivariate negative binomial regression (BNBR) model, –559.85 for the 
bivariate generalized Poisson regression (BGPR) model and –558.60 for the bivariate 
Poisson log-normal regression (BPLR) model. The Vuong statistics show that all models 
are equivalent. 
 
The Clarke’s p-values for both numbers of positive and negative differences show that 
the BGPR and BNBR models are equivalent. The p-values for the number of positive and 
negative differences are respectively 0.9996 and 0.0009 when BGPR model is compared 
with BPLR model. Thus, we reject the null hypothesis in (18) in favor of the alternative 
that the BPLR model is better than the BGPR model. The Clarke’s test seems to be too 
sensitive in showing that BPLR model is better than the BGPR model even though the 
data is generated from the BGPR model. Famoye (2011) also showed that both the 
Vuong’s test and the Clarke’s test performed poorly in achieving the nominal 
significance level, but the Vuong’s test is more powerful than the Clarke’s test. 
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Clarke (2007) showed that the distribution-free test is asymptotically more efficient than 
the Vuong’s test when the distribution of the individual log-likelihood ratios is 
leptokurtic. Clarke (2007) illustrated this with double exponential distribution which is 
symmetric. Famoye (2011) noticed that the empirical distribution of the log-likelihood 
ratios is leptokurtic, but skewed to the right hand side especially for large sample sizes. 
Furthermore, the Vuong’s test appears to be more powerful than the distribution-free test 
when comparing the BGPR and BNBR models. Thus, the Clarke’s test may not be 
appropriate for comparing the bivariate regression models. Further work is needed to 
develop a more powerful test to compare these bivariate regression models. 
 
Famoye (2005) conducted a simulation study to compare the generalized Poisson and 
negative binomial regression models when the true data generating process exhibits over-
dispersion. The Vuong’s test was used in the study. In general, the GPR model can be 
used in place of the NBR model as both models are equivalent with a high percentage. In 
small data sets (n = 25 to n = 200), the GPR model has an advantage over the NBR model 
when the data has a high proportion of zeros. In addition to the fact that the GPR can 
model under-dispersion, it appears to be a model that one should always apply. In terms 
of estimation, one model is not easier to estimate than the other. In fact, in the simulation 
study, there are a few cases when the NBR model failed to converge in data generated 
from the GPR model. This is not observed for the GPR model when the data is generated 
from the NBR model. 
 
6. Conclusion 
The generalized Poisson regression model and its modification are discussed in the paper. 
Some of the modified Poisson regression models may be applicable to one type of 
dispersed data while the modified generalized Poisson regression model is, in general, 
applicable to over-, equi- or under-dispersed data. Quite often, we do not have equi-
dispersed data. For example, it is hard to know the type of dispersion exhibited by a 
censored data. Hence, a censored generalized Poisson regression model that can 
accommodate any kind of dispersion should be applied. The modified GPR model is 
more versatile than the modified Poisson regression or even modified negative binomial 
regression models. Based on the simulation studies and comparison tests, we recommend 
the use of ordinary or modified generalized Poisson regression model for any count data. 
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