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Abstract
We consider a two-stage group sequential procedure (GSP) with a primary and a secondary endpoint
where the secondary endpoint is tested only if the primary endpoint shows significance. We assume
that the two endpoints follow a bivariate normal distribution with unknown correlation coefficient ρ.
Setting ρ = 1 will provide the most conservative critical boundary (Tamhane, Mehta and Liu 2010).
However, replacing ρ with its sample estimate r will cause familywise error rate (FWER) inflation
when r is less than ρ. We have developed an approach to control the overall FWER with adjusted
second stage critical boundary utilizing the upper confidence limit of ρ. We show that the power
gain for rejecting the secondary hypothesis of the new approach over the conservative method is
significant.
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1. Introduction

Pocock (1977) proposed a group sequential procedure (GSP) with constant nominal sig-
nificant levels. O’Brien and Fleming (1979) proposed another GSP using lower nominal
significant levels at earlier stages. Their wide early boundaries are often preferred in prac-
tice since problems in data quality may arise at the beginning of a study. Lan and DeMets
(1983) allowed group sequential designs to be extended to a more general setting in which
the error spending function and decision times are allowed to be flexible. However, most
of their work relates to a single endpoint. Jennison and Turnbull (2000) provided a com-
prehensive reference on this topic.

Tamhane, Mehta and Liu (2010) proposed a two-stage one-sided group sequential pro-
cedure (GSP) with a primary and a secondary endpoint where the primary endpoint is a
gatekeeper for the secondary endpoint. They assume that the two endpoints follow a bi-
variate normal distribution with unknown correlation coefficient ρ. In their paper, the first
and second stage critical boundaries are provided to control the FWER in two circum-
stances: (i) ρ is known or (ii) ρ = 1, which is the least favorable case. However, neither
assumption is very practical. The ρ = 1 assumption is too conservative resulting in loss of
power, while the known ρ assumption, although it yields a more powerful GSP, is never true
in practice. In this paper, we show how to use sample estimate of ρ to adjust the secondary
critical boundary in order to control the FWER.

The paper is organized as follows. Section 2 defines the notation and gives a brief re-
view of the Tamhane et al. (2010) paper. Section 3 presents the confidence limit method
to deal with unknown correlation. Section 4 gives the results of the secondary power com-
parisons of the proposed method with the most conservative method that assumes ρ = 1
and the least conservative method that assumes that the true ρ is known. Section 5 gives a
clinical example and some concluding remarks are given in Section 6.
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2. Notation and Background

Assume a two-stage GSP with sample sizes n1 and n2. Let (Xij , Yij) be i.i.d. bivari-
ate normal observations on the primary and secondary endpoints for the jth patient in
the ith group (i = 1, 2, j = 1, . . . , ni) where Xij ∼ N(µ1, σ

2
1), Yij ∼ N(µ2, σ

2
2) and

corr(Xij , Yij) = ρ ≥ 0. Let δ1 = µ1/σ1 and δ2 = µ2/σ2. For the sake of simplicity we
will assume that σ1 and σ2 are known. The hypotheses to be tested are H1 : δ1 = 0 and
H2 : δ2 = 0 against upper one-sided alternatives, subject to the gatekeeping restriction that
H2 can be tested iff H1 is rejected; otherwise H2 is accepted without a test.

The test statistics at the first stage are defined as

X1 =

∑n1
j=1X1j

σ1
√
n1

, Y1 =

∑n1
j=1 Y1j

σ2
√
n1

, (1)

and those at the second stage are defined as

X2 =

∑n1
j=1X1j +

∑n2
j=1X2j

σ1
√
n1 + n2

, Y2 =

∑n1
j=1 Y1j +

∑n2
j=1 Y2j

σ2
√
n1 + n2

. (2)

Denote the primary critical boundary for (X1, X2) by (c1, c2) and the secondary critical
boundary for (Y1, Y2) by (d1, d2). The GSP, denoted by P , operates as follows.

Stage 1: Take n1 observations, (X1j , Y1j), j = 1, . . . , n1, and compute (X1, Y1). If X1 ≤
c1 continue to Stage 2. If X1 > c1, reject H1 and test H2. If Y1 > d1, reject H2;
otherwise accept H2.

Stage 2: Take n2 observations, (X2j , Y2j), j = 1, . . . , n2, and compute (X2, Y2). If X2 ≤
c2, accept H1 and stop testing; otherwise reject H1 and test H2. If Y2 > d2, reject
H2; otherwise accept H2.

The critical boundaries of P must be determined to control the FWER, defined as

FWER = P (Reject at least one true Hi (i = 1, 2)), (3)

at level ≤ α for specified α. Throughout we will assume that (c1, c2) and (d1, d2) are
chosen so that P satisfies this FWER requirement with known true ρ.

It is easy to see that to control the FWER under H1, (c1, c2) must be an α-level bound-
ary, e.g., the O’Brien-Fleming (OF) (1979) boundary or the Pocock (PO) (1977) bound-
ary. Under H2, FWER is a function of ∆1 = δ1

√
n1 and ρ (denoted by FWER(∆1, ρ)).

To control FWER in this case, for given (c1, c2), we need to determine (d1, d2) so that
max∆1,ρ

FWER(∆1, ρ) ≤ α.
It was shown in Tamhane et al. (2010) that max∆1

FWER(∆1, ρ) is an increasing
function of ρ and the overall maximum of FWER(∆1, ρ)) occurs when ρ = 1 and ∆1 = ∆∗

1

where ∆∗
1 depends on (c1, c2) and (d1, d2).

3. Confidence Limit Method

Since max∆1
FWER(∆1, ρ) is an increasing function of ρ, the (d1, d2) boundary becomes

more conservative as the assumed value of ρ gets larger, ρ = 1 being the least favorable
of ρ. An important practical problem is how to choose this boundary when ρ is unknown
by using the sample correlation coefficient r from the first stage data. Note that we are
assuming that, as mentioned before, (c1, c2) is an a priori specified α-level boundary, but
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(d1, d2) can be adaptively determined as long as they are not functions of (X1, Y1). In the
present case they will be functions of r, which is independent of (X1, Y1).

If (d1, d2) are determined simply by substituting the sample r for the unknown ρ then
the FWER will be overestimated if r < ρ and underestimated if r > ρ. Thus, even though
the FWER may be close to the nominal α on the average, in a significant proportion of
cases it may exceed α. Figure 1 shows the plot of simulated proportion of times the FWER
exceeds the nominal value α = 0.05 as a function of ∆1 when the true ρ = 0.5. We see
that when ∆1 ≈ 1.5, the FWER exceeds α = 0.05 in about 50% of the cases. Therefore we
should not simply substitute r for the true ρ. However, given that max∆1

FWER(∆1, ρ) is
an increasing function of ρ, we can determine a conservative boundary (d1, d2) based on
an upper confidence limit on ρ.
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Figure 1: Proportion of simulation runs in which FWER > 0.05 if r is used as the true ρ
(ρ = 0.5)

Let ρ∗ be a 100(1− ε)% upper confidence limit on ρ, i.e., P (ρ ≤ ρ∗) = 1− ε. In our
calculations we used the following confidence limit based on Fisher’s arctan hyperbolic
transformation:

ρ∗ =
e2u − 1

e2u + 1
where u =

1

2
ln

(
1 + r

1− r

)
+

zε√
n1 − 3

, (4)

where zε is the 100(1−ε)% percentile of the standard normal distribution. Then, using the
property that max∆1

FWER(∆1, ρ) is an increasing function of ρ, the overall maximum
FWER can be written as follows.

Let ∆∗
1(ρ) be the value of ∆1 that maximizes FWER(∆1, ρ) for fixed ρ. Then

max
{∆1,ρ}

FWER(∆1, ρ)

= max
{ρ≤ρ∗}

FWER(∆∗
1(ρ), ρ)× P (ρ ≤ ρ∗) + max

{ρ>ρ∗}
FWER(∆∗

1(ρ), ρ)× P (ρ > ρ∗)

= FWER(∆∗
1(ρ

∗), ρ∗)× (1− ε) + FWER(∆∗
1(1), 1)× ε, (5)

where we have used the fact that the maximum of FWER(∆∗
1(ρ), ρ) over a given range of

ρ occurs at the upper limit of that range.
We want to determine the sharpest possible (d1, d2) (so as to maximize the secondary

power) subject to the above expression being ≤ α. This problem can be solved numerically
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on a computer as follows. For fixed (d1, d2) we can evaluate FWER(∆∗
1(ρ

∗), ρ∗) = α′

(say) and FWER(∆∗
1(1), 1) = α′′ (say) where α′ < α′′ are functions of (d1, d2). Gen-

erally, (d1, d2) are parameterized through some common d, e.g., for the OF boundary,
d1 = d/

√
t1, d2 = d and for the PO boundary, d1 = d2 = d.

We optimize the confidence level 1 − ε so as to minimize the common d and thus
maximize the secondary power. First note that if 1 − ε is increased then ρ∗ increases
causing α′ to increase while α′′ remains fixed. Also, the weight 1 − ε on α′ increases
while the weight ε on α′′ decreases. The net result is that as 1 − ε increases, the overall
maxFWER first decreases (since the weight ε on α′′, which is greater than α′, decreases)
and then increases. We should then choose, for each given n1 and r, the value of 1− ε that
minimizes the overall max FWER and choose d to make this minimax FWER equal to α
(which will in turn maximize the secondary power for given α).

To calculate the optimum (d1, d2) boundary for given sample correlation coefficient r,
the primary boundary (c1, c2), and the sample size n1 = n2 = n, we considered four cases
for α = 0.05: the (c1, c2) boundary is either O’Brien-Fleming (OF) (in which case c1 =√
2c2) or Pocock (PO) (in which case c1 = c2). For each choice of the primary boundary,

we considered the same two choices for the secondary boundary: O’Brien-Fleming (OF)
(in which case d1 =

√
2d, d2 = d) or Pocock (PO) (in which case d1 = d2 = d). In

Table 1 we have tabulated the optimum values of d with the associated 1 − ε for selected
values of r and n = 20, 50 and 100. For comparison purposes we have also included the
corresponding values of d (taken from Tamhane et al. (2010), Table 1) for known ρ.

The Table 1 shows how the optimum confidence coefficient 1 − ε varies with the ob-
served sample correlation coefficient r. We see that 1 − ε decreases as r increases. The
explanation for this is as follows: As r increases, the upper confidence limit ρ∗ gets close
to 1 if 1− ε becomes larger which makes the first term in (5) larger while the second term
only decreases slightly because of the decrease in ε since FWER(∆∗

1(1), 1) is fixed. Hence,
to compensate for the increase in ρ∗ as a result of increase in r and consequent increase in
FWER(∆∗

1(ρ
∗), ρ∗), the confidence coefficient 1− ε must decrease.

4. Power Comparisons

To assess the advantage of using the narrower secondary boundary resulting from the con-
fidence limit method compared to the conservative boundary assuming the least favorable
value of ρ = 1, we computed secondary powers for both the methods. For comparison
we also computed secondary powers according to the known ρ assumption. The power
computations were made for different true values of ρ = 0.1(0.1)1.0, ∆1 = δ1

√
n1 = 3,

∆2 = δ2
√
n1 = 2, n1 = n2 = n = 20, 50, 100, and for four different combinations of

OF and PO primary and secondary boundaries. For given ρ and n1, we generated 10,000
values of the sample correlation coefficient r from the approximate distribution of r. For
each realization of r, we calculated the optimum value of d by interpolating in Table 1; the
optimum (d1, d2) were obtained as explained before. Finally the average of the secondary
powers was calculated.

The results are shown in Table 2. We have plotted the secondary powers versus the ρ
values for n1 = n2 = 20 to illustrate the difference between the three methods (ρ= true
ρ, ρ = ρ∗ and ρ = 1). To save space, only OF1-PO2 boundary comparisons are provided
here. There are substantial power gains using the confidence limit method compared to
using the most conservative approach (Figure 2).
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Table 1: The d-values for the optimum secondary critical boundary d (d1 =
√
2d, d2 = d

for OF, d1 = d2 = d for PO) and the associated confidence level for n1 = n2 = n using the
sample correlation coefficient r based on the first stage sample of size n 1− ε (α = 0.05)

Procedure n r
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

OF1-OF2 20 1.489 1.503 1.517 1.532 1.547 1.565 1.586 1.611 1.635
(0.94) (0.93) (0.92) (0.91) (0.89) (0.86) (0.79) (0.69) (0.64)

50 1.463 1.477 1.492 1.507 1.524 1.543 1.564 1.590 1.622
(0.97) (0.97) (0.96) (0.96) (0.95) (0.94) (0.92) (0.87) (0.81)

100 1.450 1.464 1.478 1.494 1.512 1.531 1.553 1.579 1.612
(0.98) (0.98) (0.98) (0.97) (0.97) (0.97) (0.96) (0.96) (0.96)

∞ (r = ρ)‡ 1.416 1.428 1.440 1.455 1.473 1.493 1.519 1.551 1.591
OF1-PO2 20 1.713 1.724 1.735 1.746 1.758 1.771 1.786 1.805 1.832

(0.95) (0.94) (0.93) (0.93) (0.92) (0.91) (0.89) (0.81) (0.65)
50 1.692 1.703 1.715 1.727 1.740 1.755 1.771 1.791 1.822

(0.97) (0.97) (0.96) (0.96) (0.96) (0.95) (0.94) (0.91) (0.83)
100 1.681 1.692 1.704 1.716 1.730 1.745 1.762 1.783 1.811

(0.98) (0.98) (0.98) (0.98) (0.97) (0.97) (0.97) (0.96) (0.91)
∞ (r = ρ)‡ 1.652 1.663 1.673 1.686 1.699 1.717 1.735 1.760 1.791

PO1-OF2 20 1.368 1.383 1.397 1.412 1.429 1.447 1.465 1.490 1.516
(0.94) (0.92) (0.91) (0.90) (0.87) (0.84) (0.83) (0.76) (0.71)

50 1.341 1.355 1.370 1.387 1.407 1.426 1.447 1.471 1.505
(0.97) (0.97) (0.96) (0.94) (0.91) (0.89) (0.88) (0.87) (0.79)

100 1.327 1.341 1.356 1.372 1.391 1.410 1.434 1.459 1.494
(0.98) (0.98) (0.97) (0.97) (0.96) (0.96) (0.94) (0.93) (0.91)

∞ (r = ρ)‡ 1.290 1.304 1.317 1.333 1.350 1.372 1.396 1.429 1.470
PO1-PO2 20 1.697 1.707 1.717 1.729 1.741 1.756 1.774 1.793 1.818

(0.96) (0.95) (0.95) (0.93) (0.91) (0.89) (0.85) (0.84) (0.80)
50 1.678 1.687 1.697 1.709 1.722 1.739 1.759 1.781 1.809

(0.98) (0.98) (0.97) (0.96) (0.96) (0.92) (0.88) (0.85) (0.82)
100 1.669 1.677 1.687 1.699 1.712 1.727 1.745 1.768 1.802

(0.99) (0.99) (0.98) (0.98) (0.97) (0.96) (0.95) (0.94) (0.89)
∞ (r = ρ)‡ 1.648 1.655 1.661 1.672 1.683 1.698 1.716 1.742 1.777

† The parenthetical entry below each optimum d is the corresponding confidence coefficient 1− ε.
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Figure 2: Secondary powers of the three methods as functions of ρ using the OF1-PO2
boundary for n1 = n2 = 20

5. Example

To illustrate the proposed methodology, we use an example from Pocock, Geller and Tsiatis
(1987). A randomized double-blind crossover trial was conducted with 17 patients having
asthma or chronic obstructive airways disease to compare an inhaled active drug versus
placebo. Each patient received the active drug and placebo in a random order for consec-
utive 4-week periods. Three efficacy endpoints were measured at the end of each 4-week
period. They were forced vital capacity (FVC), forced expiratory volume (FEV1) and peak
expiratory flow rate (PEFR). We will assume that FVC is the primary endpoint, FEV1 is the
secondary endpoint and ignore PEFR. Period effect was not significant, so simple matched
pair t-statistics were computed on the mean differences between the drug and placebo.

FVC FEV1

Mean Difference 4.81% 7.56%
Standard Deviation 10.84% 18.53%
Test Statistic 1.83 1.68

Furthermore the correlation coefficient between FEV1 and FVC was 0.095.
Assuming that these data were obtained at the interim look of a two-stage group sequen-

tial trial with equal sample sizes n1 = n2 = 17 and using one-sided OF1-PO2 boundaries
with α = 0.05, we have (c1, c2) = (1.678

√
2, 1.678). Since the primary test statistic

X1 = 1.77 < c1, we do not reject the null hypothesis H1 about the efficacy of the drug
for FVC. The secondary boundary calculated using the confidence limit method equals
(d1, d2) = (1.712, 1.712). The corresponding confidence coefficient for ρ was 1−ε = 0.95
and the upper confidence limit was ρ∗ = 0.551. Check that this secondary boundary and
the confidence coefficient 1− ε are nearly equal to those listed in Table 1 for the OF1-PO2
boundary for n = 20 and r = 0.1. The non-adaptive (a priori) secondary boundary is
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(d1, d2) = (1.876, 1.876). Thus, suppose that at the end of the second stage the statistics
were the same as those at the end of the first stage, i.e., (X2, Y2) = (1.83, 1.68). Then
X2 > c2 = 1.678 and so H1 will be rejected but Y2 < 1.712, so H2 will not be rejected.

6. Concluding Remarks

Tamhane et al. (2010) assumed that the correlation coefficient ρ between the primary and
the secondary endpoint is either an unknown nuisance parameter or a known constant.
Under the former assumption they showed that ρ = 1 is the least favorable value of ρ
and used it to compute the critical boundaries of the GSP. They also computed the critical
boundaries for selected known values of ρ. However, neither assumption is very practical.
Therefore we propose to use the sample correlation coefficient r from the first stage data
in place of ρ to adaptively adjust the secondary boundary. The sampling error is taken into
account via an upper confidence limit on ρ. One possible future extension is that since
this procedure is an ’unknown correlation coefficient adjusted’ GSP, which is guaranteed
at level α, combining it with other adaptive GSPs such as Tamhane, Wu and Mehta (in
manuscript) will result in a new GSP which will provide Type I error protection against
unknown correlation coefficient.
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