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Abstract 
Phenological information reflecting seasonal changes in vegetation is an important input 
variable in climate models such as the Regional Atmospheric Modeling System (RAMS). 
It varies not only among different vegetation types but also with geographic locations 
(latitude and longitude). In the current version of RAMS, phenologies are treated as a 
simple sine function that is solely related to the day of year and latitude, in spite of major 
seasonal variability in precipitation and temperature. The sine curves of phenology are far 
different from the reality in many parts of the globe and, therefore, derivation of more 
representative phenological information would improve regional climate simulations. In 
this study, advanced spline techniques and remote sensing observations were used to 
develop a set of phenological functions for all land covers in the East Africa, and 
subsequently used in the RAMS model simulation analysis. The results show that the 
spline technique can effectively be used to characterize the phenological properties of 
most land cover types and the use of remotely sensed phenological information in 
regional climate simulations resulted in much more realistic climate conditions of the 
East Africa region. These spline phenologies are specifically needed for future climate 
projections when no remote sensing data are available. 
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1. Introduction 

Many studies demonstrate the influence of land use and land cover change on local and 
regional climate. The Climate and Land use Interaction Project, or CLIP 
(http://clip.msu.edu) attempts to understand the nature and magnitude of the interactions 
of climate and land use/cover change across East Africa. 

Phenological information reflecting the seasonal variability of vegetation is an important 
input variable in regional climate models such as Regional Atmosphere Simulation 
System (RAMS). It varies not only among different vegetation types but also with 
geographic locations (latitude and longitude).  
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Many climate models use simple functions for vegetation parameters since, to first order, 
the planet is warmer and wetter as you approach the equator. However, East Africa is 
unique in having semiarid grasslands along the equator, and drastically different surface 
conditions govern the radiation budget in this region.  Climate models are dependent on 
accurate representations of the surface radiation budget to replicate atmospheric 
development. Thus, modeling climate for a unique area like East Africa requires a 
different treatment of vegetation characteristics.  
 
RAMS version 4.4 [Cotton et al., 2003], a state-of-the-art three-dimensional atmospheric 
model, includes a representation of vegetation called the Land-Ecosystem-Atmosphere 
Feedback, version 2 (LEAF-2) [Walko et al., 2000]. For a given land cover class, LEAF-
2 provides functions for several vegetation characteristics including LAI, fractional 
cover, roughness length, and displacement height. Although these characteristics are 
interrelated, we will consider only LAI here. 
 
Remote sensing parameterization for land surface schemes in climate models is focusing 
on the transformation of categorical LULC information into quantitative land surface 
biophysical parameters [Pitman 2003]. The parameters that will result from this analysis, 
and that will be inputs to the regional climate model, include surface albedo, fractional 
vegetative cover, leaf area index (both senescence and green) and above ground biomass.  
In this paper we will investigate the variation of LAI temporally and spatially for each 
land cover type.  
 
The phenological discrepancy between the RAMS model and the remote sensing 
measurement given in Section 2 will show that the pre-assumed relationship is 
significantly different from the collected information from MODIS (Moderate Resolution 
Imaging Spectroradiometer).  
 
Based on the observations of LAI from MODIS data, a polynomial spline regression is 
employed to fit the function of each land cover type in East Africa. The fitted curve is a 
piecewise polynomial smoothly joined at knots, which are the equally-spaced time points 
of one whole year. The estimated curve is derived from the least square procedure.  In 
this paper, the linear spline is used for simple implementation and reliable theoretical 
property.  The corresponding statistical theory was provided in Huang [2003] and Wang 
and Yang [2009]. 
 
There are two great advantages of spline regression. First,it is non-parametric, i.e. the 
estimation only depends on the available data without assuming any specific form of the 
model. Second, it has a specific expression for the estimated function. Other 
nonparametric regression methods such as kernel or local polynomial do not produce an 
overall function formula. Hence the spline function is preferred for data-driven estimation 
and future prediction. The estimate function of LAI relies on the time and the spatial 
index (latitude and longitude). We developed the function first temporally and then 
further investigated the spatial influence.  
 
The research objective of this study was to derive spatially explicit phenologies for all 
LULC types in East Africa for improved parameterization of regional climate methods 
(such as RAMS). By addressing this objective, the following two questions must be 
addressed:  

Section on Statistics and the Environment – JSM 2012

3000



• What are the differences in LAI between the observations from MODIS censor 
and the simulated values from RAMS? 

• Are there any significant differences among the land cover types and do they 
vary with geographic locations? 

 
2. Methods 

 
2.1 Study Area and Data Description 
Interdisciplinary research is being conducted in East Africa, a region that is undergoing 
rapid land use change and where changes in climate would have serious consequences for 
people’s livelihoods and requiring new coping and land use strategies. 
 
Consequently, uncertainty in climate modeling is expected to be high, partly due to 
uncertainty related to the use of generic land cover parameters including their 
phenological functions.  The CLIP project also created a new land use land cover 
(LULC) classification based on the best available international LULC products for the 
East Africa region [Ge et al. 2005, Torbick et al. 2005]. The new LULC classification 
[Torbick et al., 2006), labeled “CLIP-cover,” was used as the spatial land cover layer for 
which the LAI remote sensing data were extracted by LULC, or land cover type. 
 
Two primary data sets are used to develop the phenological curves. The first is a hybrid 
LULC classification with 34 land cover types at 1km spatial resolution for the entire 
study region. The hybrid combines the strengths of Global Land Cover for the year 2000 
(GLC2000) [Mayaux et al. 2004) and Africover [Africover 2002] LULC products. 
Assessments determined GLC2000 more accurately classified natural land cover types, 
while Africover more accurately classified human-managed landscapes [Torbick et al. 
2006]. The new hybrid CLIP Cover captures these strengths geospatially for a single 
LULC for the study region. 
 
The second is LAI from the MODIS instrument on the Terra satellite platform. Briefly, 
LAI is a description of vegetation structure and the amount of plant canopy relative to a 
unit on the surface. In climate models, LAI is used to represent components of energy 
balance equations between the surface and lower atmospheric boundaries. The MODIS 
LAI product used, MOD15A2 v4.0 [Knyazikhin et al. 1999], is available at 8-day 
temporal intervals at 1km spatial resolution covering the entire study region in a 2-
dimensional tessellation. The data was obtained through the National Aeronautics and 
Space Administration (NASA) Land Processes Distribution Active Archive Center.      
    
Data was obtained from February 2000 to December 2003 at 8-day intervals. Data 
preprocessing included mosaicing tiles, rescaling data values, quality control for cloud 
cover and fill values, and reprojecting data from Integerized Sinusoidal Projection into 
Lambert Azimuthal Equal Area. Using the hybrid LULC product, LAI data was subset 
into tables by LULC type. Each table contains 8-day LAI from February 2000 – 
December 2003 by LULC type with geographic coordinates (latitude / longitude) at each 
pixel (or LAI value) representing spatial location information.   
 
2.2 Polynomial Spline Regression  
The dependence of LAI on time is investigated in the framework of nonparametric 
regression. To introduce this concept, let ( ){ }n

iii YT 1, =  be identically and independently 
distributed observations, satisfying  
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( ) ( ) ,,,1, niTTmY iiii K=+= εσ  

where the errors iε  have mean zero and variance one. The mean function  and 

standard deviation function 

( )tm
( )tσ  are not assumed to be of any specific form but have to 

be estimated from the data directly, see Wang and Yang [2009].  If the data actually 
follows a polynomial regression model, the function ( )tm   is a polynomial of t  and ( )tσ  
will typically be a constant.  
 
To introduce the concept of spline, one divides the finite interval [ ]ba,  into  
subintervals 

( )1+N
[ ) [ ]btJNjttJ NNjjj ,,1,,0,, 1 =−== + K . A sequence of equally-spaced 

points { } , called interior knots, are given as  N
jjt

1=

1,,1,0,,110 +=+==<<<<= + Njjhattbttat jNN LL , 

In which  is the subinterval length. We approximate the mean 
function  by linear spline. These are piecewise linear functions, linear on each  

and continuous on the entire interval 

( ) ( 1/ +−= Nabh )
( )tm jJ

[ ]ba, . The linear spline estimator of  based on 

data  is given by 
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in which { } ,0m)( jj ttaxtt −=− +  is a so-called “truncated linear function” with 

truncation at knot . jt
 
2.3 Spline Fitting for LAI by LULC Type 
As a first step we resample the LAI pixels within 0.1 latitude degree and 0.1 longitude 
degree together as one grid block—a scale suitable for most regional climate modeling 
approaches.  In order to get the representative LAI values, the spatially averaged LAI at 
each grid is obtained for each available Julian day. The second step is to get the means of 
the same Julian days over four years. After the above two-step averages, LAI means of a 
whole year at each grid is available. 
 
Based on the LAI means, the estimates following equation (1) is established after one 
step least squared procedure for each grid block. To avoid the non-continuity difference 
between the values of early January and late December, we duplicate the one-year data to 
create two-year data, hence [ ] [ ]730,0, =ba . For uniformity across various LULC types 
and locations, we pick one knot every two months, i.e. 11=N    

          ( ) ( ) .11,...,1,
6

365,ˆˆˆ 12

11

1
0 =⎟

⎠
⎞

⎜
⎝
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+
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j
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(2) 
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Let Z  = LAI, x = latitude, y = longitude, t = Julian day. For each LC type we develop the 
LAI function as follows, 

                   ,                     

(3) 

( ) ( ) ( ) ( ) tyxattyxayxatyxZ
j

jj ⋅+−⋅+= ∑
=

+
,ˆ,ˆ,ˆ),,( 12

11

1
0

The coefficients  for ( yxa j ,ˆ ) 12,...,1,0=j , will be estimated based on the MODIS data 
at each individual grid block.  The coefficients for different land cover types are listed in 
Tables 1 to 4. 
 

3. Results 
 

3.1 Land Cover Phenologies 
In order to show the magnitude of the difference driven by the spatial affect, in particular 
the latitude, the linear spline curves estimated by formula (1), the RAMS simulation 
curve and the difference curve are provided at equator, 5º north, , and 5º south 
respectively. Each grid block covers the area of 0.1 by 0.1 degrees, the longitudinal of 
three grid blocks are chosen to be as close as possible. In Figure 1 of the Appendix, the 
green solid line represents the LAI at 5º N, the red dashed line for the equator, and the 
blue dotted line for 5º S. 
 
Figure 1 illustrates several examples of the seasonal variation in LAI for common classes 
in the study area. The first column gives the trigonometric curve of LAI over time for 
four land cover types: deciduous woodland, deciduous shrubland with sparse trees, open 
to very open trees, and rainfed herbaceous crop. Although the length of vertical axis of 
the RAMS curves is the same for all four land cover types—that is, they are all 0.2— the 
start points of the range are slightly different. In the figures of the linear splines the range 
of the vertical is 6, from 0 to 6, which is a substantial difference from the RAMS default 
values.  If the same scale is chosen, no visible variation occurs among the RAMS curve at 
the three latitudes. There is no longitude effect in the default RAMS values since it plays 
an unnoticeable role in seasonality of the model system.  In addition, there is only one 
valley for each of the northern latitudes and one peak for each south latitudes in RAMS, 
and the valley or peak point is in the exact middle of the year. At the equator it always 
flat at any time interval no matter what land cover type is represented, in clear 
contradiction of East Africa’s well-known dual rainy seasons. 
 
Compared with default RAMS values, the second column in Figure 1 show that the linear 
spline smoothing captures the changing seasonal signals of the LAI and varying spatial 
effect cross the study region. Due to its data-driven attributions, splines have a better fit 
spatially and temporally. The green solid line (5º N) achieves its peak point of LAI 
around August, while all the blue dotted lines (5º S) show the largest LAI value in the 
spring, such as April for Deciduous Woodland. The fact is not surprising that the northern 
and southern curves are symmetric about the center, June, for each type because the two 
locations are symmetric about the equator. For all four land cover types, the LAI at the 
equator has greater LAI than those far away from the equator. Especially for land cover 
type rainfed herbaceous crop, the regression line at the equator is far above both spline 
regression lines at 5ºN and 5ºS latitude. The linear spline estimates produce two 
noticeable valleys at the equator. That is a big difference from the constant LAI value of 
RAMS. The LAI varies at the equator over time; it is not fixed given the distinct bimodal 
weather pattern.  
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 The last column in Figure 1 shows the differences between the LAI values from default 
RAMS values and the linear spline estimates. This is evident from the graph, except there 
is little overlap between the difference at equator and the “0 line” for land cover types; 
the remaining distance is very large. The statistical testing of the differences is given in 
next section. 
 
In summary, the observed LAI and resultant splines are distinctly different from the 
RAMS/LEAF-2 default parameterization, with the LEAF-2 parameterization completely 
failing to capture the seasonality at the equator or in the regions +/- 5° away.  The spline 
parameterizations accurately capture bimodal greening events at the equator, unimodal 
features away from the equator, and the very low LAI for maize regions following 
harvest. 
 
3.2 Sensitivity and Uncertainty 
Confidence bands of a function estimator are the collection of simultaneous confidence 
intervals over the range of data. It can be used to test the hypothesized curve. Linear 
spline confidence bands were developed in Wang and Yang [2009]. Given a small 
significance level (less that 0.05), the confidence bands based on the sample information 
can be obtained. If the null curve is totally covered by the upper and lower confidence 
bands, then its deviation from the true curve is insignificant and will be accepted as a 
valid representation of the true curve; otherwise, it should be rejected as the null curve, 
since it is significantly different from the data pattern.  
 
In this paper, the hypotheses for a given land cover type are:   
                     Ho: LAI trend curve follows the default RAMS Curve 
                     Ha: LAI trend curve does not follow the default RAMS Curve.  
For the test, the same data from the previous four land types for comparison is used. The 
three columns correspond to the grid point at 5º N,  at equator and 5º S. The blur solid 
line represents the LAI value of the RAMS, the green dotted line is the linear spline 
regression line, and the dashed red lines (upper and lower) are the confidence bands 
derived from the MODIS data given the significance level 0.001. 
 
Although tested with a significance level as low as 0.001, the RAMS curve falls totally 
outside of both bands for 5º N and 5º S. At the equator there is some overlap for 
deciduous woodland and deciduous shrubland with sparse trees; however, it is still far 
from being totally covered by the bands. Therefore this test illustrates that the RAMS 
curves overestimate the LAI, with the difference being significantly large indicated from 
the small p-value <0.001.  
 
3.3 Phenological Functions of Land Cover 
To model the LAI spatially, the coefficients ( ) 12,..,0,,ˆ =jyxa j  in equation (3) are 
further approximated with quadratic functions of x and y.  The same four dominant land 
cover types are selected for analysis.  
 
From Section 2, a coefficient set with 13 coefficient elements { ( ) 12,..,1,0,,ˆ =jyxa j } is 

obtained. Each coefficient element ( )yxa j ,ˆ  is related to all grid points. For better 
regression, the outliers (grid points) are first detected and removed from the coefficients 
based on the screening of the kernel density estimators. Then the corresponding part in 
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the data set will be left out too. The deleted outliers are shown in the next table. At most 
5.4% out of the whole data will not affect the regression. 
 

Outliers Deciduous with 
Shrubland Trees  

Deciduous  
Woodland 

Open to Very 
Open Trees 

Rainfed 
Herbaceous 
Crop 

Grid points 
(%) 

348  
(4.831%) 

344 
(3.985%) 

269  
(5.418%) 

324  
(5.234%) 

Data points 
(%) 

16254 
(3.2%) 

16084 
(2.672%) 

14334 
(3.982%) 

18448 
(4.068%) 

 
The polynomial regression is applied to fit the above trimmed coefficients. The employed 
function is as follows for  12,...,1,0=j

                            ( ) xyeydydxcxccyxa j 1
2

21
2

210,ˆ +++++= .                                  
(4) 

By the ordinary least square procedure, the new set of coefficients ( )121210 ,,,,, eddccc  
are obtained for the previous four land cover types and are listed in Table 1 to Table 4 in 
Appendix. 
 
 Employing the table coefficients for ( )yxa j ,ˆ  in (4), and further plugging into equation 
(3), the LAI estimates are obtained based on the parametric regression spatially and 
spline regression temporally. There is negligible amount of unreasonable estimates. 
 

LAI 
Estimates 

Deciduous with 
Shrubland 
Trees 

Deciduous  
Woodland 

Open to Very 
Open Trees 

Rainfed 
Herbaceous Crop 

Less than 0 699 (0.142%) 369 (0.062%) 122 (0.035%) 110 (0.025%) 
Between 0 

and 7 99.858% 99.938% 99.965% 99.975% 

 
When we replace all the negatives with 0, then the linear correlation coefficients between 
the final estimates and the raw LAI is provided in the following table.  
 

 Deciduous with 
Shrubland 
Trees  

Deciduous  
Woodland 

Open to Very 
Open Trees 

Rainfed 
Herbaceous 
Crop 

Linear 
Correlation 
Coefficient 

0.62814 0.57409 0.59555 0.53253 

 
3.4 Example from Application in RAMS 
Figure 3 shows LAI values at 8 May 2000 for three combinations of land cover and LAI 
phenology, along with a MODIS image for comparison.  LAI exerts a strong influence on 
the radiation budget at the surface, and when incorporated into models it can improve 
accuracy [Lu and Shuttleworth 2002].  Figure 2(a) shows grid-cell-averaged LAI for 
OGE with LAI values assigned from LEAF-2. Figure 2(b) shows CLIPCover re-assigned 
or “crosswalked” with the same vegetation classes in the LEAF-2 lookup table.   Figure 
2(c) shows the LAI distribution using the CLIPCover classes, but with LAI values 
assigned based on the MODIS-derived spline functions. Here, class-specific time curves 
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of LAI (splines) have been estimated for different regions to generate look-up tables for 
LAI more appropriate for these regions than LEAF-2. Figure 2(d) shows the raw MODIS 
LAI for the date selected.  Since RAMS treats LAI slightly differently from MODIS, the 
example shown here has been corrected for this discrepancy.  The profound difference in 
LAI from 2(a) to 2(d) at the Equator shows that the LEAF-2 function is essentially 
treating the semidesert of eastern Kenya as having high LAI with no variation.  These 
successive improvements have helped to give a more precise surface parameterization 
while keeping the flexibility needed to accommodate projected land use change. 
 

4. Discussion 
 
4.1 Complexity of Land Cover Types 
The imagery data for each land cover type is collected from January 2000 to December 
2003, roughly every 8 days for each pixel (solution = 1 kilometer). Some difficulties that 
have been encountered were empty cells due to cloud cover, particularly in the eastern 
forested areas, and the small size and complex characterizations of some land covers. An 
inherent mismatch exists between plot scales (at the size of trees) and the regional climate 
modeling scale (in this case, about 36 km). For the purpose of this application, anything 
smaller than mesoscale circulations could not be adequately characterized in the model, 
and thus the spline functions could be applied under the assumption that the lower 
atmosphere is well mixed at sub-grid scale resolutions. The averaging within a climate 
model grid presumes that land cover classifications in one area are very similar to those 
of another, which may not be true for areas with extremely different seasonality. While 
climate models would be easier to run without the use of land cover classes – instead 
using directly input albedo and so forth from remote sensing— future projections of 
climate that include LULC change must include some sort of land cover classification, 
and improvements in differentiating complex land cover types should lead to better land 
cover parameterizations and better climate simulations. Similar efforts at improvement 
(e.g. Bounoua et al. 2000 for NDVI, Houldcroft et al. 2009 for albedo, ) have shown 
meaningful gains in GCM performance. Similar gains in performance using this approach 
are detailed in Moore et al. (2010). 
 
4.2. How the Spline Model Depicts the Nature of Each Type 
We calculated the mean for each grid (0.1 degree) at every available Julian day.  For each 
specific grid, the LAI of each land cover type can be seen as a series of data points over 
explanatory variable time (one year). Thus, we treated each series of LAI at each grid as a 
univariate function of time. The polynomial spline regression was employed to get the 
linear spline estimator of LAI, which is shown in Figure 1.  
 
In order to capture the spatial features of each land cover type, we combined all the 
regression coefficient of linear splines.  Then for each coefficient we perform the 
polynomial regression on the spatial index, latitude and longitude. The corresponding 
outcomes are listed in the tables of Appendix.  
 
4.3. Contrast to Other Phenological Approaches 
In general, this approach resulted in a large improvement over the generic parameters in 
RAMS in the representation of seasonal variability of LAI. This improvement is expected 
to significantly improve the seasonal precipitation pattern and temperature in RAMS 
scenarios (Moore et al. 2010). For certain land cover, the phenological information varies 
spatially. At the same grid point the phenologies change for different land covers. An 
alternative solution to providing phenologies is using MODIS imagery directly, and this 
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is frequently used in some climate projections. However, generalizing phenological 
change by using the nearest available MODIS data may not be an effective solution for 
future projections because of land cover change. In complex terrain like East Africa, 
adjacent pixels of a given class (e.g. rainfed agriculture) may have significantly different 
seasonal responses like crop harvesting date just by virtue of being at higher altitude or in 
the rain shadow of a mountain. This approach thus offers a solution that is designed to be 
flexible with land cover change. This approach differs from the Jönsson and Eklundh 
(2002) approach characterized by TIMESAT in that land cover classes are not masked 
for.  
 
4.4. Future Directions 
Sensitivity needs to be quantified spatially and by land cover type. For better estimation 
and prediction, the time dependence and the spatial correlation should be considered.  
There are more influences like elevation, topology, and distance to other geographic 
features such as ocean, lakes, mountain and presence of human settlement etc. As climate 
model resolution increases, the demand for correspondingly accurate resolution on 
phenological parameterizations will also increase. An immediate near-term goal is to 
contrast a land-cover-masked Gaussian approach like TIMESAT with this spline 
parameterization and determine how the techniques differ. 
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Appendix 
 

Table 1. Coefficients Table for Land Cover Type - Deciduous Shrubland with 
Sparse Trees 

   0c   1c   2c   1d   2d   1e
  0â 13.86733 0.189258 -0.01538 -0.61737 0.007717 -0.00977 
  1â 0.501879 0.009621 0.000144 -0.02756 0.00039 -0.00021 
  2â -0.63643 -0.00351 -1.1E-05 0.033409 -0.00044 0.000168 
  3â 0.425755 -0.00089 -7.2E-05 -0.02161 0.000266 -1.6E-05 
  4â 0.230287 -0.00537 -0.00025 -0.01455 0.000229 0.000037 
  5â -0.38993 0.001671 -7.7E-05 0.022872 -0.00033 -6.9E-05 
  6â -0.17788 -6.9E-05 0.000194 0.010029 -0.00015 0.000025 
  7â 0.560264 0.007802 0.000233 -0.03082 0.000431 -0.00013 
  8â -0.65163 -0.00305 -3.8E-05 0.034248 -0.00045 0.000146 
  9â 0.430822 -0.00104 -6.2E-05 -0.02189 0.00027 -8E-06 
  10â 0.222698 -0.00512 -0.00026 -0.01413 0.000224 0.000024 
  11â -0.36273 0.000745 -1.7E-05 0.021394 -0.00031 -2.3E-05 
  12â -0.2125 -0.00392 0.000027 0.012197 -0.00018 0.00008 

 
 

Table 2. Coefficients Table for Land Cover Type - Deciduous Woodland. 

    0c   1c   2c   1d   2d   1e
  0â 15.60422 0.258968 -0.01681 -0.7006 0.008762 -0.01201 
  1â 0.285465 0.010554 0.000218 -0.01437 0.000196 -0.00021 
  2â -0.52319 -0.00485 -3.6E-05 0.025799 -0.00032 0.000184 
  3â 0.423792 -0.00264 -0.00014 -0.02168 0.000263 0.000014 
  4â 0.165587 -0.00551 -0.00016 -0.01029 0.000164 0.000077 
  5â -0.44096 0.003254 -0.00018 0.025446 -0.00036 -0.00014 
  6â 0.062666 0.000927 0.000261 -0.00331 0.000032 0.00001 
  7â 0.322273 0.008389 0.000262 -0.01656 0.000226 -0.00012 
  8â -0.53571 -0.00429 -4.9E-05 0.026532 -0.00033 0.000161 
  9â 0.428083 -0.00285 -0.00013 -0.02193 0.000267 0.000022 
  10â 0.157467 -0.0052 -0.00017 -0.00982 0.000158 0.000064 
  11â -0.41156 0.002126 -0.00014 0.023738 -0.00034 -9.7E-05 
  12â -0.07965 -0.00318 -1E-06 0.004623 -7.5E-05 0.00005 
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Table 3. Coefficients Table for Land Cover Type - Open to Very Open Trees. 

    0c   1c   2c   1d   2d   1e
  0â 21.36797 0.582205 -0.01761 -0.9429 0.011065 -0.01953 
  1â 0.755761 0.026441 0.000046 -0.0398 0.00054 -0.00064 
  2â -0.40319 -0.00305 -0.00016 0.020365 -0.00027 0.000065 
  3â -0.52959 -0.02078 -1.5E-05 0.030611 -0.00044 0.000568 
  4â 0.583969 0.007367 -0.00017 -0.03334 0.000476 -0.00027 
  5â -0.20593 -0.00388 -0.00013 0.012463 -0.00018 0.000071 
  6â -0.4363 -0.00384 0.000293 0.024033 -0.00035 0.000095 
  7â 1.062424 0.023523 0.000225 -0.05847 0.000819 -0.0005 
  8â -0.49433 -0.00221 -0.00021 0.025909 -0.00035 0.000024 
  9â -0.49496 -0.02111 0.000005 0.028505 -0.00041 0.000584 
  10â 0.529546 0.007892 -0.00021 -0.03003 0.000427 -0.0003 
  11â -0.01689 -0.00576 -1.4E-05 0.000928 -8E-06 0.000164 
  12â -0.22684 -0.01172 0.000174 0.011508 -0.00016 0.000297 

 
 

Table 4. Coefficients Table for Land Cover type - Rainfed Herbaceous Crop. 

    0c   1c   2c   1d   2d   1e
  0â 27.46197 0.516892 -0.01812 -1.34425 0.017536 -0.01782 
  1â 0.665941 0.016663 0.000098 -0.03529 0.000488 -0.00035 
  2â -0.30472 0.00122 -0.0002 0.015172 -0.0002 -7.9E-05 
  3â -0.44979 -0.01913 -2E-06 0.0253 -0.00035 0.000526 
  4â 0.59182 0.004496 -0.00022 -0.03303 0.000461 -0.0002 
  5â -0.11557 -0.00089 -0.00021 0.006697 -9.1E-05 -3.5E-05 
  6â -0.56834 -0.0029 0.000415 0.031754 -0.00046 0.000102 
  7â 0.902208 0.017373 0.000252 -0.04916 0.000688 -0.0003 
  8â -0.37557 0.001015 -0.00024 0.019326 -0.00026 -9.1E-05 
  9â -0.4228 -0.01907 0.000015 0.023719 -0.00033 0.000531 
  10â 0.54799 0.004403 -0.00024 -0.03046 0.000424 -0.00021 
  11â 0.038773 -0.00055 -0.00012 -0.00236 0.000039 -5E-06 
  12â -0.28223 -0.00642 0.000175 0.015208 -0.00022 0.000154 
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Figure 1. Comparison Between the RAMS Curve of LAI and Its Linear Spline Estimates 
Derived from MODIS Data. 
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Figure 2. Confidence Bands of the Linear Spline Estimates and the RAMS Curves. 

 
 
 

Section on Statistics and the Environment – JSM 2012

3012



 
 

Figure 3. Improved Representation of Land Surface in RAMS. 
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