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Abstract 
In policy evaluations, the standard difference-in-differences (DID) method relies on the 
strong assumption that the average confounding effect of concurrent events is the same 
for the comparison group unaffected by the policy and the experimental group affected 
by the policy. Recent advancements include using propensity score matching or 
weighting to equate the covariate distribution between the comparison group and the 
experimental group. Another approach is to estimate the distribution of the counterfactual 
outcome of the experimental group resembling the outcome change in the comparison 
group. We propose an alternative strategy that involves a pair of prognostic scores per 
unit representing the predicted pre-policy outcome and the predicted post-policy outcome 
under the comparison condition in the absence of policy change. Subsequent DID 
analyses within subclasses defined by this pair of prognostic scores allow for a calibrated 
adjustment. This study compares the identification assumptions required by the 
prognostic score-based strategy with those of the existing strategies. We illustrate with an 
evaluation of a policy requiring all ninth graders to take algebra. 
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When using time series data to evaluate system-wide policies, concurrent 
changes often pose threats to internal validity. The standard difference-in-differences 
(DID) method resorts to a non-equivalent comparison group whose average outcome 
change is due to such confounding. This strategy relies on the strong assumption that the 
average confounding impact of concurrent events is the same for the comparison group 
unaffected by the policy and the experimental group affected by the policy. This 
assumption will be violated and therefore the DID results will be biased, for example, if 
the confounding effect varies by individual characteristics and if the experimental group 
and the comparison group differ in such characteristics. 

In the recent econometrics literature, researchers have attempted to equate the 
covariate distribution of the comparison group with that of the experimental group in 
each time period through propensity score matching or weighting before conducting DID 
analyses (Abadie, 2005; Cerdá, et al, 2012; Heckman, Ichimura, Smith, & Todd, 1998; 
Heckman, Ichimura, & Todd, 1997). Another approach is to nonlinearly estimate the 
entire distribution of the post-policy outcome of the experimental group associated with 
the counterfactual absence of the policy resembling the change in the outcome 
distribution of the comparison group (Athey & Imbens, 2006). Each of these strategies 
invokes a set of strong assumptions that may not hold in a particular application. 

We propose an alternative strategy that extends the Peters-Belson method 
(Belson, 1956; Peters, 1941) to the DID context. The use of prognostic scores (Hansen, 
2008) in the causal inference literature can be viewed as the latest development of the 
Peters-Belson method. Specifically, our strategy involves a pair of prognostic scores per 
unit representing the predicted pre-policy outcome and the predicted post-policy outcome 
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if unaffected by the policy. By conducting DID analyses within subclasses defined by this 
pair of prognostic scores, the adjustment is calibrated in relation to the covariates 
predicting the outcomes. Our rationale is to equate the predicted amount of confounding 
of concurrent events across the pre-policy experimental group, the post-policy 
experimental group, the pre-policy comparison group, and the post-policy comparison 
group within subclasses of units.  

This study compares the identification assumptions required by the prognostic 
score-based strategy with the existing strategies. We clarify conditions under which the 
prognostic score-based DID solution is hypothesized to outperform the standard DID and 
the propensity score-based or nonlinear distribution-based strategies. We illustrate with 
an evaluation of a policy adopted by the Chicago Public Schools requiring all ninth 
graders to take algebra. The CPS data are representative of education accountability data 
collected by many school systems around the U.S. The theoretical results presented in 
this paper apply to a continuous outcome such as student achievement data as well as a 
binary outcome such as whether a student eventually graduates from high school. 
 The paper is organized as follows: section 1 describes the motivating example of 
a system-wide policy; section 2 introduces our notation and defines the causal estimands; 
section 3 derives the bias associated with the confounding of concurrent events in an 
unadjusted analysis, lists the key identification assumptions required by the standard DID 
analysis, and describes some major challenges to these assumptions in the current 
application; section 4 reviews the existing alternative DID strategies, clarifies their 
identification assumptions, and reveals their limitations when applied to the current 
example; section 5 introduces the prognostic score-based DID strategy and provides its 
theoretical rationale, identification assumptions, and analytic procedure; section 6 
discusses the relative strengths and limitations of the prognostic score-based DID 
solution in comparison with the existing DID methods. We also discuss extensions of the 
prognostic score-based DID strategy to multilevel multi-cohort data. 
 

1. Motivating Example 

The algebra-for-all policy was adopted by the Chicago Public Schools in 1997. 
Prior to that year, whether a 9th grader took algebra mostly depended on the student’s 
math preparation in the elementary school. The algebra-for-all policy was intended to 
eliminate remedial math courses for low-achieving students and thereby improving high 
school math achievement across the board. Earlier research has shown a considerable 
amount of improvement in 9th graders’ average math achievement in the post-policy years 
in comparison with that in the pre-policy years. 

However, CPS students experienced a number of important policy changes 
during those same years. The concurrent events include a policy retaining low-achieving 
students in 3rd, 6th, and 8th grades, a change in the special education program, and an 
overall improvement in elementary education, all of which might lead to a change in 9th 
graders’ incoming math skills. Additionally, these other policies might change student 
response to the math curriculum. For example, once low-achieving students were retained 
and once special education students were provided with extra support, the 9th graders in 
regular education might achieve a higher level of math learning due to the change in peer 
composition even without math curricular change. Concurrent policies might also change 
school personnel or school climate, which would then affect the quality of instruction and 
subsequently student learning. Hence the impact of replacing remedial math with algebra 
was likely confounded by the impacts of these concurrent interventions.  

Among the 59 neighborhood high schools in Chicago that existed both before 
and after 1997, 45 schools offered remedial math to low-achieving students prior to 1997 
and replaced remedial math with algebra after 1997; 14 schools offered algebra to all 9th 
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graders prior to 1997 and thus were unaffected by the policy. This provides a possibility 
of using the DID strategy to remove the confounding of concurrent events. However, the 
standard DID strategy would produce biased results, for example, if the confounding 
effect is different for whites and minority students and if the racial composition differs 
between the two types of schools.  

The current application involves repeated cross-sectional data of individuals (9th 
graders) nested in a panel of clusters (high schools). The constitution of student cohorts 
changed over time. Also available are repeated assessments of students prior to the 9th 
grade. Unlike most DID studies in which individuals in the experimental group started to 
experience the policy at a certain time while those in the comparison group never 
experienced the policy, in this application, the policy had already been implemented in 
the comparison schools before it was adopted by the experimental schools.  

 
2. Notation and Causal Estimands 

For simplicity, we start by focusing on the mean difference in the 9th grade math 
outcome between a pre-policy cohort and a post-policy cohort, contrasting a hypothetical 
experimental school with a hypothetical comparison school. We will then extend the 
results to multiple schools and multi-cohort time series data. 

Let 𝑌𝑖 denote the math outcome of student 𝑖 at the end of the 9th grade measured 
on a continuous scale. Let 𝐺𝑖 = 1 if the student attended an experimental school affected 
by the policy; let 𝐺𝑖 = 0 if the student attended a comparison school unaffected by the 
policy. Let 𝑇𝑖 = 1 if the student was enrolled in the 9th grade during the post-policy year 
and 0 if the student was enrolled in the pre-policy year. Let 𝑋𝑖  denote a vector of 
covariates measuring student characteristics that are not affected by the policy. 

Let 𝑌𝑖𝐺1.𝑇1
(1)  denote the potential outcome that student i would display if attending 

the experimental school and having exposure to the policy in the post-policy year; let 
𝑌𝑖𝐺1.𝑇1

(0)  denote the student’s potential outcome if the student in the experimental school 
counterfactually had no exposure to the policy in the post-policy year should the policy 
have been postponed. Here the superscript indicates policy exposure while the subscript 
indicates school membership and cohort membership. Suppose that we are interested in 
estimating the average policy effect for students attending the experimental school in the 
post-policy year (i.e., the treatment effect on the treated in the experimental group). The 
causal estimand is 

𝛿𝐺1.𝑇1 = 𝐸 �𝑌𝐺1.𝑇1
(1) − 𝑌𝐺1.𝑇1

(0) |𝐺 = 1, 𝑇 = 1�. 
If, instead, we are interested in estimating the average policy effect for students 

attending the experimental school in the pre-policy year (i.e., the treatment effect on the 
untreated in the experimental group), we may consider the possibility that the policy 
could have been introduced in an earlier year. Let 𝑌𝑖𝐺1.𝑇0

(1)  denote the potential outcome 
that student i would display if attending the experimental school and counterfactually 
having exposure to the policy in the pre-policy year; let 𝑌𝑖𝐺1.𝑇0

(0)  denote the student’s 
potential outcome in the pre-policy year in the absence of the policy. The causal estimand 
becomes 

𝛿𝐺1.𝑇0 = 𝐸 �𝑌𝐺1.𝑇0
(1) − 𝑌𝐺1.𝑇0

(0) |𝐺 = 1, 𝑇 = 0�. 
If the pre-policy cohort and the post-policy cohort in the experimental school 

differ in covariate distribution that is not caused by the policy and if the policy effect 
depends on covariate values, then the average policy effect may differ between the two 
cohorts. In the current application, we focus on the policy impact on the pre-policy cohort 
𝛿𝐺1.𝑇0 in which 𝑌𝐺1.𝑇0

(1)  is counterfactual for those attending the experimental school in the 
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pre-policy year. Because the comparison group in this study had exposure to the policy in 
both years, it allows us to estimate the amount of confounding of concurrent events as the 
difference between 𝑌𝐺1.𝑇1

(1)  and 𝑌𝐺1.𝑇0
(1) , which then makes possible the estimation of 𝛿𝐺1.𝑇0. 

 
3. Bias due to Concurrent Events and the Standard DID Method 

For pre-policy students in the experimental school, in order to estimate 𝛿𝐺1.𝑇0, a 
naive analysis would use the observed outcome information from the post-policy cohort 
𝑌𝐺1.𝑇1

(1)  to identify the counterfactual outcome of the pre-policy cohort 𝑌𝐺1.𝑇0
(1) . The 

estimation would be unbiased under the assumption that 
𝐸 �𝑌𝐺1.𝑇1

(1) |𝐺 = 1, 𝑇 = 1� = 𝐸 �𝑌𝐺1.𝑇0
(1) |𝐺 = 1, 𝑇 = 0�. 

That is, the pre-policy cohort and the post-policy cohort in the experimental school would 
have displayed the same mean outcome if both cohorts had been exposed to the policy. 
However, even if these two cohorts in the experimental school were identical, the above 
assumption would still be untenable due to overwhelming evidence for the confounding 
of concurrent events that we have mentioned in section 1. 
  The average effect of the concurrent events for students in the experimental 
school can be defined as follows: 

𝑏𝐺1 = 𝐸 �𝑌𝐺1.𝑇1
(1) |𝐺 = 1, 𝑇 = 1� − 𝐸 �𝑌𝐺1.𝑇0

(1) |𝐺 = 1, 𝑇 = 0�. 
The comparison school had the policy in both years. Thus, the average confounding 
effect for the comparison school students is 

𝑏𝐺0 = 𝐸 �𝑌𝐺0.𝑇1
(1) |𝐺 = 0, 𝑇 = 1� − 𝐸 �𝑌𝐺0.𝑇0

(1) |𝐺 = 0, 𝑇 = 0�. 
The standard DID method removes the confounding effect under the assumption  

𝑏𝐺1 = 𝑏𝐺0.     (1) 
Let 𝐷𝐺1 denote the observed difference between the pre-policy cohort and the 

post-policy cohort in the experimental school:  
𝐷𝐺1 =  𝐸[𝑌|𝐺 = 1, 𝑇 = 1] − 𝐸[𝑌|𝐺 = 1, 𝑇 = 0]. 

Let 𝐷𝐺0 denote the observed difference between the pre-policy cohort and the post-policy 
cohort in the comparison school: 

𝐷𝐺0 =  𝐸[𝑌|𝐺 = 0, 𝑇 = 1] − 𝐸[𝑌|𝐺 = 0, 𝑇 = 0]. 
The standard DID estimator is 𝐷𝐺1 − 𝐷𝐺0, which estimates the causal estimand 𝛿𝐺1.𝑇0 
when assumption (1) holds. One obtains the standard DID estimator through analyzing a 
linear model  

𝑌𝑖 = 𝛼0 + 𝛼1𝑇𝑖 + 𝛽0𝐺𝑖 + 𝛽1𝐺𝑖𝑇𝑖 + 𝑒𝑖.                             (2) 
However, when the key assumption in equation (1) does not hold, the standard 

DID method will lead to bias in an amount equal to 𝑏𝐺1 − 𝑏𝐺0 . Assumption (1) will 
always hold when the confounding effect of concurrent events is a constant for all units 
in the population. However, when there is heterogeneity in the confounding effect, the 
standard DID estimate is biased under the following two scenarios. Here we let X denote 
observed pretreatment covariates and U for unobserved pretreatment covariates. They 
represent individual characteristics that cannot be affected by the policy. 

Scenario 1: Assumption (1) is violated if the confounding effects of concurrent 
events are heterogeneous with respect to 𝑋 or 𝑈 and if the experimental school and the 
comparison school differ in the composition of 𝑋 or 𝑈 during the pre-policy year (Meyer, 
1995). For example, if racial composition differs between the experimental school and 
the comparison school in the pre-policy year and if the confounding factors have 
differential effects on whites and minority students, the standard DID estimate will be 
biased. 
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Scenario 2: Even if the experimental school and the comparison school had the 
same distribution of 𝑋  and 𝑈  in the pre-policy year, they may experience different 
historical changes in 𝑋 or 𝑈 in the absence of the policy change, which would lead to a 
difference in pretreatment composition between these two schools during the post-policy 
year. If the confounding effects of concurrent events are heterogeneous with respect to 𝑋 
or 𝑈, the standard DID will again produce a biased result.   

 
4. Existing Alternative DID Strategies 

4.1. DID with Linear Covariance Adjustment 
Prior research has typically employed the following DID model with linear 

covariance adjustment for observed pretreatment characteristics 𝑋 (e.g., Barnow, Cain, & 
Goldberger, 1980; Card & Kruger, 1993; Dynarski, 2003; Fitzpatrick, 2008). Under 
model-based assumptions, this strategy may adjust for (a) differences between the 
experimental group and the comparison group in X in the pre-policy year as well as (b) 
additional between-group differences in X in the post-policy year that is not a result of the 
policy. In addition to bias removal, inclusion of X may improve the precision of the 
policy effect estimate by reducing error variance. 

𝑌𝑖 = 𝛼0 + 𝛼1𝑇𝑖 + 𝛽0𝐺𝑖 + 𝛽1𝐺𝑖𝑇𝑖 + 𝜆𝑋𝑖 + 𝑒𝑖                                 (3) 
Here 𝛽1 is an unbiased estimate of the causal estimand 𝛿𝐺1.𝑇0 under a key assumption, 
that is, the confounding effect of concurrent events for the experimental group is the 
same as that for the comparison group within levels of pretreatment covariates 𝑋 = 𝑥: 

𝑏𝐺1|𝑋 = 𝑏𝐺0|𝑋                     (4) 
where 

𝑏𝐺1|𝑋 = 𝐸 �𝑌𝐺1.𝑇1
(1) |𝐺 = 1, 𝑇 = 1, 𝑋 = 𝑥� − 𝐸 �𝑌𝐺1.𝑇0

(1) |𝐺 = 1, 𝑇 = 0, 𝑋 = 𝑥�, 

𝑏𝐺0|𝑋 = 𝐸 �𝑌𝐺0.𝑇1
(1) |𝐺 = 0, 𝑇 = 1, 𝑋 = 𝑥� − 𝐸 �𝑌𝐺0.𝑇0

(1) |𝐺 = 0, 𝑇 = 0, 𝑋 = 𝑥�. 
 The following assumptions are additionally implied by Model (3): 

(5a) Conditioning on X, the average treatment effect for the untreated in the 
experimental group is the same as that for the entire population should all units have been 
untreated. This assumption is required because the above integral is taken over the 
marginal distribution of X rather than the conditional distribution of X given 𝐺 = 1 and 
𝑇 = 0. 

 (5b) The functional form of the outcome model is correctly specified. This 
assumption is critical when the experimental group and the comparison group do not 
have complete overlap in the distribution of X such that inference is based on 
extrapolation.  

(5c) The X-Y relationships are the same between the experimental group and the 
comparison group and are invariant across time.  

4.2. DID with Propensity Score Adjustment 
Heckman and colleagues (1997, 1998) used propensity score matching to identify 

the common support in the observed covariates X and to equate the distribution of X 
between the experimental group and the comparison group. Abadie (2005) proposed 
using propensity score-based inverse-probability-of-treatment weighting to equate the 
distribution of X between the two groups. Analyzing longitudinal data in which a single 
cohort of students experienced no change in policy over time if in the comparison group 
and experienced a change in policy if in the experimental group, Heckman and colleagues 
implicitly assumed that the pretreatment composition of each group does not change over 
time. For modeling repeated cross-sectional data, Abadie (2005) alternatively assumed 
that, within a treatment group, the pre-policy observations and the post-policy 
observations are random samples from the same population, and therefore the 

Social Statistics Section – JSM 2012Social Statistics Section – JSM 2012

4956



pretreatment composition is expected to be the same between the pre-policy cohort and 
the post-policy cohort. 

The propensity score-based methods do not rely on outcome model 
specifications. They thereby avoid assumptions (5a), (5b), and (5c) required by linear 
covariance adjustment. Assumption (4) remains necessary. That is, the confounding 
effect of concurrent events for the experimental group should be the same as that for the 
comparison group on average within levels of observed covariates X (see Heckman et al, 
1997, 1998, and Abadie 2005). In other words, given the observed pretreatment 
covariates X, there should be no unobserved differences in the confounding between the 
experimental group and the comparison group. Yet in carrying out the propensity score-
based methods, the researchers invoked an assumption stronger than assumption (4). Let 
𝜙(𝑋) = 𝑝𝑟(𝐺 = 1|𝑋) be the propensity score representing the conditional probability 
that an individual would be assigned to the experimental group given X. Propensity score 
matching or inverse-probability-of-treatment weighting assumes the following: 

𝑌𝐺1.𝑇1
(1) , 𝑌𝐺0.𝑇1

(1) ⊥ 𝐺 �𝑇 = 1, 𝜙(𝑋);  and 𝑌𝐺1.𝑇0
(1) , 𝑌𝐺0.𝑇0

(1) ⊥ 𝐺� 𝑇 = 0, 𝜙(𝑋).       (6) 
Assumption (6) is much stronger than assumption (4). This is because assumption (6) 
requires 𝐸 �𝑌𝐺1.𝑇1

(1) |𝐺 = 1, 𝑇 = 1,𝑋 = 𝑥� = 𝐸 �𝑌𝐺0.𝑇1
(1) |𝐺 = 0, 𝑇 = 1, 𝑋 = 𝑥�  and 

𝐸 �𝑌𝐺1.𝑇0
(1) |𝐺 = 1, 𝑇 = 0, 𝑋 = 𝑥� = 𝐸 �𝑌𝐺0.𝑇0

(1) |𝐺 = 0, 𝑇 = 0, 𝑋 = 𝑥� . In contrast, 
assumption (4) holds even when the average potential outcomes of the experimental 
group and the comparison group are unequal in a given year.  

Applying the propensity score-based matching method, one would analyze a 
propensity score model for being assigned to the experimental school, and match the 
comparison school students to those in the experimental school on the basis of the 
estimated propensity score. One would then apply the standard DID model to the 
matched data. The rationale and assumptions of propensity score weighting adjustment 
are similar to those of propensity score matching. To implement, one may compute an 
inverse-probability weight for each student as a function of the estimated propensity 
score. The standard DID model is then applied to the weighted data (Abadie, 2005). 

In a study of repeated cross-sectional data in which the pretreatment composition 
of the two cohorts within each treatment group are presumably different, Blundell et al 
(2004) alternatively suggested using two pairs of propensity scores (one for the 
experimental versus the comparison group in a given time period and the other for time 
period given group membership) such that all four cells are balanced on observed 
characteristics. This alternative procedure assumes the same mechanism for treatment 
group selection across the pre-policy cohort and the post-policy cohort. 

4.3. Nonlinear Changes-in-Changes (CIC) Adjustment 
When the experimental group and the comparison group are different in 

unobserved pretreatment characteristics U, to estimate the treatment effect on the treated, 
Athey and Imbens (2006) proposed a nonlinear CIC model estimating the entire 
distribution of the counterfactual outcome for the experimental group based on the 
observed change in the outcome distribution of the comparison group. The assumptions 
were stated in the case that the comparison group was never exposed to the policy. 

 (7a) A single index model and common change in production function between 
groups. Holding policy constant, the outcome satisfies the production function 𝑌(0) =
ℎ(𝑢, 𝑡) for 𝑡 = 0, 1 that applies to both the experimental group and the comparison group 
in a given time period. All outcome differences between the two groups are attributed to 
between-group differences in U. In the absence of policy change, the change over time in 
the outcome distribution of each group arises from the fact that ℎ(𝑢, 0) in the pre-policy 
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year differs from ℎ(𝑢, 1) in the post-policy year due to concurrent confounding factors; 
the change from ℎ(𝑢, 0) to ℎ(𝑢, 1) is assumed to be common to the two groups. 

(7b) Strict monotonicity. The production function ℎ(𝑢, 𝑡) is strictly increasing in 
𝑢 given t.  

 (7c) Time invariance within groups: 𝑈 ⊥ 𝑇|𝐺. The population of units within a 
given group does not change over time and therefore the distribution of U does not 
change. In other words, U cannot be affected by concurrent confounding factors. Any 
differences between the experimental group and the comparison group in U therefore 
should be stable over time. 

(7d) The support for the distribution of U in the experimental group is a subset of 
that in the comparison group: 𝕌1 ⊆ 𝕌0 . When this assumption does not hold, the 
population of relevant interest will need to be re-defined. 

Applying this strategy to our example where the comparison group was always 
exposed to the policy, we define the conditional outcome distribution in group g and time 
t as 𝐹𝑌.𝑔𝑡 . Intuitively, there is a 𝑢 value corresponding to each outcome value in both 
groups in a given year. For an experimental unit whose observed post-policy outcome 
value is y, its counterpart in the comparison group would have the same post-policy 
outcome y determined by 𝑢  through the monotonic function ℎ(𝑢, 1)  that links the 
distribution of U with 𝐹𝑌.01. Because the distribution of U is time invariant within each 
group, one then links u to an observed pre-policy outcome value 𝑦′ in the comparison 
group through the function ℎ(𝑢, 0). Here 𝑦′ is the counterfactual outcome associated with 
policy exposure for experimental units in the pre-policy year with characteristics u. In 
general, the counterfactual outcome 𝑌𝐺1.𝑇0

(1)  for an experimental unit with an unobserved 
component 𝑢  such that ℎ(𝑢, 0) = 𝑦  can be estimated by the CIC model: 𝑘𝐶𝐼𝐶(𝑦) =
𝐹𝑌.01
−1 (𝐹𝑌.00(𝑦)) , where 𝐹𝑌−1(𝑞) = inf{𝑦 ∈ 𝕐: 𝐹𝑌(𝑦) ≥ 𝑞} for 𝑞 ∈ [0,1]  is the inverse 

distribution function.  

4.4. Strengths and Limitations of the Existing Alternative DID Strategies 
 Unlike the standard DID models represented by model (2), the existing 
alternative DID strategies apply when the average amount of confounding due to 
concurrent events differs between the experimental group and the comparison group. 
Below we summarize their relative strengths and limitations. 

Linear Covariance Adjusted DID. DID models with linear covariance adjustment 
for observed pretreatment covariates 𝑋  are easy to implement through ordinary least 
squares. This method is nonetheless constrained by the model specification. For example, 
model (3) would generate a biased estimate of the policy effect if, in addition to the 
differences in 𝑋 between the experimental group and the comparison group during the 
pre-policy year or the post-policy year, the X-Y relationships are also different between 
the two groups within a cohort under the same policy. To relax assumption (5c) of 
invariant X-Y relationships, one may fit a DID model including higher-order interactions. 
Below is a saturated linear model including all possible interactions:  

𝑌𝑖 = 𝛼0 + 𝛼1𝑇𝑖 + 𝛽0𝐺𝑖 + 𝛽1𝐺𝑖𝑇𝑖 + 𝜃00𝑋𝑖 + 𝛼2𝑇𝑖𝑋𝑖 + 𝛽2𝐺𝑖𝑋𝑖 + 𝛽3𝐺𝑖𝑇𝑖𝑋𝑖 + 𝑒𝑖. 
Here 𝛽3  indicates whether the policy effect linearly depends on 𝑋 . However, as the 
number of covariates increases and as nonlinearity arises, model misspecification 
becomes increasingly likely and is consequential for identification. Additionally, linear 
covariance adjusted DID models can lead to extrapolations outside the allowable range. 

Propensity Score-Based DID. The propensity score-based DID methods seem 
suitable when there is a large dimension of observed pretreatment covariates. These 
methods allow the policy effect to be heterogeneous across different levels of propensity 
scores without explicitly modeling policy interactions with covariates. Yet the propensity 
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score-based strategies make no use of covariates that are unrelated to group membership 
G but are predictive of Y. For example, student incoming math skills may show 
comparable distributions between the experimental school and the comparison school 
such that the measure of incoming skills plays no role in the propensity score model for 
G. However, adjusting for incoming skills would potentially improve the precision of the 
policy estimate especially if the confounding of concurrent events is a function of 
incoming skills. In the meantime, propensity score models may include covariates that 
are related to G but are unrelated to Y. Adjusting for such covariates would likely reduce 
precision due to a reduction in common support and may even introduce bias when 
propensity score-based weighting is employed (Austin, 2008; Brookhart, Schneeweiss, 
Rothman, Glynn, Avorn, & Stürmer, 2006). More importantly, the propensity score-
based methods invoke assumption (6) that is considerably stronger than necessary. DID 
analyses do not require that the comparison group and the experimental group have the 
same pretreatment composition. Rather, it only requires that the two groups or subsets of 
units from the two groups be affected in the same amount by concurrent confounding 
factors. Hence the range of common support for a DID analysis might be considerably 
larger than one might obtain when using propensity scores. 

Nonlinear CIC Model. The nonlinear CIC models show particular strengths when 
the experimental group and the comparison group are different in the distribution of  an 
unobservable. They require no assumptions with regard to the functional form of the 
models and are invariant to the scaling of the outcomes. This strategy also allows for 
heterogeneous policy effect without explicitly modeling the heterogeneity. This is 
because the amount of confounding  ℎ(𝑢, 1) − ℎ(𝑢, 0) may vary across units. The CIC 
models can also be extended to the case with observed covariates 𝑋 if all the assumptions 
hold conditional on 𝑋 (Athey and Imbens, 2006). However, the nonlinear CIC method 
requires strong assumptions that may not always be plausible. For example, when the 
distribution of U differs between the experimental group and the comparison group in a 
given time period under the same policy, it seems likely that the U-Y relationship may 
differ between the two groups as well, which will invalidate Assumption (7a). The 
method requires that U explains all the variation in the outcome, which rules out classical 
measurement error in the outcome. This seems unrealistic because measurement error is 
often inevitable. In standardized educational tests, the reliability is typically around .95, 
implying 5% of the error variance in the student outcome. It may also be rare for 
assumption (7b) strict monotonicity to hold for the relationship between Y and U. 
Besides, the nonlinear CIC method becomes inapplicable when the distribution of U 
differs across repeated cross-sectional cohorts. 

In light of the limitations of the existing DID strategies, we propose a prognostic 
score-based DID alternative that relies on a different set of assumptions arguably more 
plausible in the current application. 

 
5. Prognostic Score-Based DID Strategy 

5.1. Theoretical Rationale 
We have noted earlier that assumption (4) is sufficient for estimating 𝛿𝐺1.𝑇0, the 

policy effect of interest. The rationale for using prognostic scores is that, rather than 
attempting to equate the covariate distribution between the experimental school and the 
comparison school in terms of how likely a student would select the experimental school 
as is the goal of the propensity score model, we attempt to directly estimate the amount of 
confounding associated with concurrent events if a student would attend the comparison 
school. Under Assumption (4), this is assumed equal to the amount of confounding if the 
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student would attend the experimental school. In other words, across all four G-by-T 
groups of students, we attempt to identify those who share the following quantity: 

𝑏𝐺0|𝑋 = 𝐸 �𝑌𝐺0.𝑇1
(1) |𝑋� − 𝐸 �𝑌𝐺0.𝑇0

(1) |𝑋�. 
Hence our goal is to identify a subpopulation of students defined by 𝑋 = 𝑥 who would 
experience the same amount of confounding if attending the comparison school and 
therefore are homogeneous in 𝑏𝐺0|𝑋. We have observed 𝑌𝐺0.𝑇1

(1)  of post-policy students in 
the comparison school and 𝑌𝐺0.𝑇0

(1)  of pre-policy students in the comparison school. 
Prognostic score model specifications will allow us to predict this pair of potential 
outcomes for all four groups of students. Within each homogeneous subpopulation, DID 
analysis is expected to generate an unbiased estimate of the policy effect of interest. 

This strategy is an extension of the Peters-Belson method and the prognostic 
score method. Suppose that the outcome generating mechanism within each treatment 
group is based on a set of observed pretreatment characteristics X. One may fit a 
regression model in the comparison group and then apply the fitted model to each 
experimental unit. The prediction model generates, for each experimental unit, a 
predicted counterfactual outcome associated with the comparison condition (Belson, 
1956; Peters, 1941). This predicted outcome has been named a “prognostic score” 
because it is a function of prognostic pretreatment covariates X (Hansen, 2008).   

 The X-Y relationships may change from the pre-policy year to the post-policy 
year in the comparison school due to the confounding of concurrent events. Hence for our 
purpose, we estimate a pair of prognostic scores, 𝜓0𝐺0(𝑋) and  𝜓1𝐺0(𝑋), defined as the 
predicted pre-policy and post-policy outcomes respectively of a student if assigned to the 
comparison school. To simplify the notation, henceforth we use 𝜓0 and 𝜓1 as a shorthand 
for 𝜓0𝐺0(𝑋) and 𝜓1𝐺0(𝑋), respectively. Let 

𝜓0 = 𝐸 �𝑌𝐺0.𝑇0
(1) |𝑋 = 𝑥� = 𝑓(𝑥, 0), 

𝜓1 = 𝐸 �𝑌𝐺0.𝑇1
(1) |𝑋 = 𝑥� = 𝑓(𝑥, 1). 

Hansen (2008) has shown that the pretreatment covariates 𝑋 become independent of the 
potential outcomes given the corresponding prognostic scores, that is, 

𝑌𝐺0.𝑇0
(1) ⊥ 𝑋|𝜓0, 
𝑌𝐺0.𝑇1

(1) ⊥ 𝑋|𝜓1. 
When 𝑋 includes all the outcome predictors, which is nearly possible in high-quality 
educational accountability data that contain repeated assessments of students over 
multiple years, the amount of confounding for those attending the comparison school 
conditioning on 𝑋 can be represented as 

𝑏𝐺0|𝑋 = 𝐸 �𝑌𝐺0.𝑇1
(1) |𝐺 = 0, 𝑇 = 1, 𝑋� − 𝐸 �𝑌𝐺0.𝑇0

(1) |𝐺 = 0, 𝑇 = 0, 𝑋� = 𝜓1 − 𝜓0. 

5.2. Identification Assumptions 
Suppose that 𝜓0  and 𝜓1  are based on true models for 𝑌𝐺0.𝑇0

(1)  and 𝑌𝐺0.𝑇1
(1)  

respectively. Then the following results hold: 
𝑌𝐺0.𝑇0

(1) ⊥ 𝑋|𝜓0,𝜓1; 
𝑌𝐺0.𝑇1

(1) ⊥ 𝑋|𝜓0,𝜓1. 
We now propose an alternative form of Assumption (4): 

𝐸 �𝑌𝐺1.𝑇1
(1) |𝐺 = 1, 𝑇 = 1,𝜓0,𝜓1� − 𝐸 �𝑌𝐺1.𝑇0

(1) |𝐺 = 1, 𝑇 = 0,𝜓0,𝜓1� 

= 𝐸 �𝑌𝐺0.𝑇1
(1) |𝐺 = 0, 𝑇 = 1,𝜓0,𝜓1� − 𝐸 �𝑌𝐺0.𝑇0

(1) |𝐺 = 0, 𝑇 = 0,𝜓0,𝜓1�.           (8) 
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Assumption (8) is considerably weaker than assumption (6) invoked by the propensity 
score-based methods as the former does not require 𝐸 �𝑌𝐺1.𝑇1

(1) |𝐺 = 1, 𝑇 = 1,𝜓0,𝜓1� =

𝐸 �𝑌𝐺0.𝑇1
(1) |𝐺 = 0, 𝑇 = 1,𝜓0,𝜓1� . Nor does it require 𝐸 �𝑌𝐺1.𝑇0

(1) |𝐺 = 1, 𝑇 = 0,𝜓0,𝜓1� =

𝐸 �𝑌𝐺0.𝑇0
(1) |𝐺 = 0, 𝑇 = 0,𝜓0,𝜓1�. Assumption (8) also implies the following: 

(9a) 𝜓𝑡 = 𝑓(𝑥, 𝑡), for 𝑡 = 0,1 defines the function for the counterfactual outcome 
under the comparison condition at time t regardless of one’s actual treatment group 
membership. This assumption is stronger than assumption (4) because it additionally 
requires that, if an experimental unit had counterfactually been assigned to the 
comparison school in a given time period t, the x-y relationship would have been the 
same as that of the comparison units with observed pretreatment characteristics x. Hence 
𝜓1 − 𝜓0 = 𝑓(𝑥, 1) − 𝑓(𝑥, 0)  is the expected amount of confounding associated with 
concurrent events under the comparison condition for all units with observed 
pretreatment characteristics x. However, assumption (9a) is different from assumption 
(7a) invoked by the nonlinear CIC method that requires applying a single production 
function ℎ(𝑢, 1) to both 𝑌𝐺1.𝑇1

(1)  and 𝑌𝐺0.𝑇1
(1)  when 𝑡 = 1 and a single production function 

ℎ(𝑢, 0) to both 𝑌𝐺1.𝑇0
(1)  and 𝑌𝐺0.𝑇0

(1)  when 𝑡 = 0.  
(9b) The support for the observed covariates X in the comparison school, denoted 

by 𝕏0, encompasses the support in the experimental school denoted by 𝕏1. This is similar 
to Athey and Imbens’ (2006) assumption (7d) with regard to the unobservable U.  

We prove in the Appendix that the DID estimator integrated over the 
distributions of the two prognostic scores is an unbiased estimate of 𝛿𝐺1.𝑇0  under the 
above assumptions. As a side-note, if the x-y association does not change from the pre-
policy year to the post-policy year in the comparison school, the two prognostic scores 
will differ only by a constant. In other words, the amount of confounding does not 
depend on 𝑋. Then the standard DID will apply. 

5.3. Analytic Procedure 
To implement, we specify a prognostic score model for the comparison school 

students in the pre-policy year. In parallel, we specify a second prognostic score model 
for the comparison school students in the post-policy year. We then apply these two 
models to all students in all four G-by-T combinations. We predict every student’s 
prognostic score associated with the comparison condition in the pre-policy year and that 
associated with the comparison condition in the post-policy year. Hence every student 
has a pair of prognostic scores 𝜓0  and 𝜓1 . Assuming that the confounding effect of 
concurrent events is the same across the comparison school and the experimental school 
for students who are homogeneous in the prognostic scores, we then conduct DID within 
cells jointly defined by 𝜓0 and 𝜓1. For example, we may divide the sample into three 
strata on the basis of 𝜓0 and then subdivide each stratum into three on the basis of 𝜓1. 
We may conduct a standard DID analysis within each of the nine cells and then pool the 
results to obtain an estimate of the policy effect. This procedure allows the DID estimate 
to differ across different levels of 𝜓0 and 𝜓1. Let 𝐷𝑠 for 𝑠 = 1, … ,9 denote the nine cells. 
Through analyzing the following model 

𝑌𝑖 = 𝛼1𝑇𝑖 + 𝛽0𝐺𝑖 + 𝛽1𝐺𝑖𝑇𝑖 + � 𝜆𝑠𝑖𝐷𝑠𝑖
9

𝑠=1
+ 𝑒𝑖. 

We obtain 𝛽1 as an estimate of the average policy effect. That is, 

𝛽1 = � {[𝐸(𝑌|𝐺 = 1, 𝑇 = 1, 𝑆 = 𝑠) − 𝐸(𝑌|𝐺 = 1, 𝑇 = 0, 𝑆 = 𝑠)]
9

𝑠=1
− [𝐸(𝑌|𝐺 = 0, 𝑇 = 1, 𝑆 = 𝑠) − 𝐸(𝑌|𝐺 = 0, 𝑇 = 0, 𝑆 = 𝑠)]}𝑝𝑟(𝑆 = 𝑠). 

It is easy to show that the above model is equivalent to a weighted analysis 
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𝑌𝑖 = 𝛼0 + 𝛼1𝑇𝑖 + 𝛽0𝐺𝑖 + 𝛽1𝐺𝑖𝑇𝑖 + 𝑒𝑖,   (10) 
where the weight 𝜔 can be computed as follows: 
when 𝐺 = 1, 𝑇 = 1, 𝑆 = 𝑠,  

𝜔 =
𝑝𝑟(𝐺 = 1|𝑇 = 1)

𝑝𝑟(𝐺 = 1|𝑇 = 1, 𝑆 = 𝑠) ; 

when 𝐺 = 0, 𝑇 = 1, 𝑆 = 𝑠,  

𝜔 =
𝑝𝑟(𝐺 = 0|𝑇 = 1)

𝑝𝑟(𝐺 = 0|𝑇 = 1, 𝑆 = 𝑠) ; 

when 𝐺 = 1, 𝑇 = 0, 𝑆 = 𝑠,  

𝜔 =
𝑝𝑟(𝐺 = 1|𝑇 = 0)

𝑝𝑟(𝐺 = 1|𝑇 = 0, 𝑆 = 𝑠) ; 

when 𝐺 = 0, 𝑇 = 0, 𝑆 = 𝑠,  

𝜔 =
𝑝𝑟(𝐺 = 0|𝑇 = 0)

𝑝𝑟(𝐺 = 0|𝑇 = 0, 𝑆 = 𝑠). 

To obtain an estimate of the policy effect on the untreated pre-policy students in 
the experimental school 𝛿𝐺1.𝑇0 , the DID estimate in each of the nine cells is to be 
weighted by the cell-specific proportion of pre-policy students in the experimental 
school. We can easily change the weight to the following: 
when 𝐺 = 1, 𝑇 = 1, 𝑆 = 𝑠,  

𝜔 =
𝑝𝑟(𝐺 = 1|𝑇 = 1)

𝑝𝑟(𝐺 = 1|𝑇 = 1, 𝑆 = 𝑠) ×
𝑝𝑟(𝐺 = 1|𝑇 = 0, 𝑆 = 𝑠)

𝑝𝑟(𝐺 = 1|𝑇 = 0) ; 

when 𝐺 = 0, 𝑇 = 1, 𝑆 = 𝑠,  

𝜔 =
𝑝𝑟(𝐺 = 0|𝑇 = 1)

𝑝𝑟(𝐺 = 0|𝑇 = 1, 𝑆 = 𝑠) ×
𝑝𝑟(𝐺 = 1|𝑇 = 0, 𝑆 = 𝑠)

𝑝𝑟(𝐺 = 1|𝑇 = 0) ; 

when 𝐺 = 1, 𝑇 = 0, 𝑆 = 𝑠,  
𝜔 = 1; 

when 𝐺 = 0, 𝑇 = 0, 𝑆 = 𝑠,  

𝜔 =
𝑝𝑟(𝐺 = 0|𝑇 = 0)

𝑝𝑟(𝐺 = 0|𝑇 = 0, 𝑆 = 𝑠) ×
𝑝𝑟(𝐺 = 1|𝑇 = 0, 𝑆 = 𝑠)

𝑝𝑟(𝐺 = 1|𝑇 = 0) . 

As we will discuss in section 6.2, the weighted model (10) is relatively convenient to use 
in multi-cohort analysis.  

Various semi-parametric and non-parametric strategies can be employed in 
specifying the prognostic score models. Issues related to model misspecifications are 
beyond the scope of the current paper. However, by allowing the models for 𝜓0 and 𝜓1 
to be different functions of X under the comparison condition, T and G each take a fixed 
value in a prognostic score model. Hence there is no need to consider T-by-X interaction, 
G-by-X interaction, T-by-G interaction, and T-by-G-by-X three-way interactions in any 
given model. Finally, the prognostic score-basis DID method does not preclude 
covariance adjustment in the outcome model for further bias removal and precision 
improvement. 

 
6. Discussion 

A major challenge to DID analyses is that the confounding effect of concurrent 
events may vary by pretreatment covariates that are distributed differently across the 
experimental group and the comparison group. We have shown that the prognostic score-
based DID strategy provides a new solution by allowing the average amount of 
confounding to differ between the experimental group and the comparison group. This 
new strategy invokes assumptions weaker than most of the existing DID methods. In 
particular, by using a prognostic score-based weighting adjustment, the outcome model is 
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non-parametric in nature and hence is exempt from strong model-based assumptions that 
make conventional DID analyses prone to bias.  

In this section we first discuss the relative strengths and limitations of the 
prognostic score-based DID strategy in comparison with the existing alternative DID 
strategies. A particular focus is placed on comparing the identification assumptions 
across these different methods. We then extend the prognostic score-based DID strategy 
to multilevel multi-cohort data typically seen in education accountability systems. 

6.1. Comparisons between Prognostic Score-Based DID and Other Existing DID 
Strategies 

(a) Unlike the linear covariance adjusted DID models, the prognostic score-based 
DID strategy does not assume that, conditional on the observed pretreatment covariates 
X, the average treatment effect for the untreated in the experimental group is the same as 
that for the entire population should all units have been untreated. This advantage is 
shared by the propensity score-based DID methods and the nonlinear CIC models. 

(b) Unlike linear covariance adjusted DID, prognostic score-based DID does not 
assume invariant x-y relationships across time.  

(c) Prognostic score-based DID assumes that, if an experimental unit had 
counterfactually been assigned to the comparison condition in a given time period, the x-y 
relationship would have been the same as that of the comparison units with the same 
observed pretreatment characteristics. This differs from the assumption invoked by the 
nonlinear CIC method that requires applying a single production function to the outcomes 
of both the experimental group and the comparison group in a given time period. 

(d) Unlike the nonlinear CIC models, the prognostic score-based DID models do 
not require strict monotonicity. Nor do they require that the outcome contain no 
measurement error. These advantages are shared by linear covariance adjusted DID and 
propensity score-based DID. 

(e) While the nonlinear CIC models assume time invariance in the distribution of 
the unobserved 𝑈 within the experimental group and the comparison group, this is not a 
requirement for all the other DID methods including prognostic score-based DID. 

(f) A major difference between propensity score-based DID and prognostic 
score-based DID is that the latter does not require equating the pretreatment composition 
of the experimental group and the comparison group. The same advantage is shared by 
linear covariance adjusted DID and nonlinear CIC. 

(g) Similar to propensity score-based DID, prognostic score-based DID 
emphasizes and verifies the common support between the experimental group and the 
comparison group with regard to observed covariates X, which effectively avoids 
unwarranted extrapolation. However, propensity score-based DID may suffer if some 
pretreatment covariates unrelated to the outcome lead to a shrinkage in the common 
support. The nonlinear CIC models make a similar assumption with regard to the 
unobserved covariates U that cannot be empirically verified. 

 (h) Similar to the propensity score-based DID, the prognostic score-based DID 
greatly reduces the dimensionality of covariates for adjustment, which is a major 
advantage over the linear covariance adjusted DID. 

(i) Both prognostic score-based DID and DID with propensity score-based 
matching enable researchers to detect heterogeneity in the confounding effects of 
concurrent events as well as in the policy effect. 

(j) A unique feature of the nonlinear CIC models is that it does not require 
explicit specification of the outcome model. All other DID strategies require explicit 
modeling that involves functional forms. The prognostic score-based DID models are no 
exception. To alleviate the impact of misspecifying the functional form of the model, 
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researchers may employ various semi-parametric or nonparametric approaches, a topic 
beyond the scope of this paper. 

(k) Both linear covariance-adjusted DID and propensity score-based DID would 
suffer if the experimental group and the comparison group differ in the distribution of 
unobsered U and if the amount of confounding of concurrent events is a function of U. 
The same type of unobserved U, if independent of the observed covariates X, would also 
bias the prognostic score-based DID estimate of the policy effect. However, if the 
confounding does not depend on 𝑈 or if the distribution of 𝑈 is the same between the 
experimental group and the comparison group conditioning on X, then omitting 𝑈 would 
not introduce bias in general. The special implication for the prognostic score-based DID 
method is that the estimated policy effect could possibly be unbiased even when the 
prognostic score models have low predictive power. The nonlinear CIC model allows the 
distribution of 𝑈 to differ between the experimental group and the comparison group yet 
requires that the 𝑈-𝑌 relationship be the same between these two groups. This assumption 
seems implausible because a change in the distribution of 𝑈 will likely change the 𝑈-𝑌 
relationship. 

Future research will compare the performance of prognostic score-based DID 
with that of other existing DID methods under different sets of assumptions through 
simulations. Sensitivity analysis may be developed to assess the amount of bias 
associated with a possible unobservable covariate. 

6.2. Extension of the Prognostic Score-Based DID Strategy to Multilevel Multi-
Cohort Data 
 We may extend the prognostic score-based DID strategy first to multiple 
experimental schools and multiple comparison schools enrolling one pre-policy cohort 
and one post-policy cohort. We then extend the method to time-series data of multiple 
cohorts of pre-policy and post-policy 9th graders. 

In multilevel data, a student’s potential outcome is a function of student-level 
pretreatment covariates X and school-level pretreatment covariates W. One may specify a 
pair of two-level prognostic score models with students at level 1 and schools at level 2 
for the pre-policy and post-policy outcomes under the comparison condition. In theory, a 
student might have multiple prognostic scores depending on which comparison school 
the student might have counterfactually attended. We define the prognostic scores as a 
student’s predicted outcome of attending a typical comparison school, which can be 
viewed as the average of the school-specific prognostic scores for the student. In 
accountability systems in which repeated assessments of student academic achievement 
have been equated vertically, one may model the growth trajectories of students as well.  
 The CPS data contain multiple cohorts of ninth graders both before and after the 
policy was introduced. Making full use of the available data may increase the statistical 
power. By modeling the systematic trend in outcome change over time in the absence of 
policy change, one may gain additional leverage in removing the confounding effect of 
concurrent events. More importantly, it becomes possible to investigate whether the 
policy effect was enhanced as its implementation became mature or whether the effect 
faded out over time if the reform lost its momentum after the initial period.  

Suppose that the data include three pre-policy cohorts and three post-policy 
cohorts of ninth graders going through the same set of high schools. Let 𝑡 = −2,−1, 0 
denote the three pre-policy years 1996, 1995, and 1994, respectively. Let 𝑡′ = 1, 2, 3 
denote the three post-policy years 1997, 1998, and 1999, respectively. Past applications 
have relied heavily on model-based assumptions with regard to the temporal trend in the 
data in the absence of policy change. Applying the prognostic score-based DID strategy 
to multi-cohort data, we define the causal estimands non-parametrically and therefore do 
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not impose a linear time trend. Let 𝑌1𝑡
(0) denote the potential outcome of a pre-policy 

student attending an experimental school in the absence of the policy in pre-policy year t; 
let 𝑌1𝑡′

(1) for 𝑡′ = 1, 2, 3 denote the student’s three counterfactual outcomes in the three 
respective post-policy years. The average first-year policy effect on the math learning of 
pre-policy students attending experimental schools is defined as follows: 

� 𝐸� 𝑌11
(1) − 𝑌1𝑡

(0)� 𝑝𝑟(𝑡|𝐺 = 1)
0

𝑡=−2
. 

Here 𝑝𝑟(𝑡|𝐺 = 1)  is the proportion of pre-policy students in experimental schools 
entering the ninth grade in year t. The policy effect may depend on the maturity of 
implementation. This can be investigated by combining the results of pair-wise DID 
analyses. Each DID analysis contrasts one pre-policy cohort in year 𝑡 with one post-
policy cohort in year 𝑡′ and is based on the corresponding pair of prognostic scores 𝜓𝑡 
and 𝜓𝑡′. Let 𝐼(𝑡′ − 𝑡) for 𝑡′ = 1, 2, 3 be the indicator for the subset of data used in the 
DID analysis for estimating the policy effect after 𝑡′ years of implementation. Let 𝑍 = 1 
denote the post-policy years and 0 for the pre-policy years. A weighted outcome model 
will be 

𝑌𝑖𝑗 = � 𝐼𝑖𝑗(𝑡′ − 𝑡)�𝛼0𝑡′ + 𝛼1𝑡′𝑍𝑖𝑗 + 𝛽0𝑡′𝐺𝑖𝑗 + 𝛽1𝑡′𝐺𝑖𝑗𝑍𝑖𝑗�
3

𝑡′=1
+ 𝑢𝑗 + 𝑒𝑖𝑗, 

𝑒𝑖𝑗~𝑁(0, 𝜎2),       𝑢𝑗~𝑁(0, 𝜏). 
Here 𝛽11, 𝛽12, and 𝛽13 estimate the policy effects after one year, two years, and three 
years of implementation, respectively.  
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Appendix 

 
 Here we prove that the DID estimator integrated over the joint distribution of the 
two prognostic scores 𝜓0  and 𝜓1  is an unbiased estimate of 𝛿𝐺1.𝑇0  under the 
identification assumptions (8), (9a), and (9b). 

� �𝐷𝐺1|𝜓1,𝜓0 − 𝐷𝐺0|𝜓1,𝜓0�𝑓(𝜓0|𝜓1)𝑓(𝜓1)𝑑𝜓0𝑑𝜓1
𝜓1𝜓0

 

= � ({𝐸[𝑌|𝐺 = 1, 𝑇 = 1,𝜓1,𝜓0] − 𝐸[𝑌|𝐺 = 1, 𝑇 = 0,𝜓1,𝜓0]}
𝜓1𝜓0

− {𝐸[𝑌|𝐺 = 0, 𝑇 = 1,𝜓1,𝜓0]
− 𝐸[𝑌|𝐺 = 0, 𝑇 = 0,𝜓1,𝜓0]})𝑓(𝜓0|𝜓1)𝑓(𝜓1)𝑑𝜓0𝑑𝜓1 

= � ��𝐸 �𝑌𝐺1.𝑇1
(1) |𝐺 = 1, 𝑇 = 1,𝜓1,𝜓0� − 𝐸 �𝑌𝐺1.𝑇0

(0) |𝐺 = 1, 𝑇 = 0,𝜓1,𝜓0��
𝜓1𝜓0

− �𝐸 �𝑌𝐺0.𝑇1
(1) |𝐺 = 0, 𝑇 = 1,𝜓1,𝜓0�

− 𝐸 �𝑌𝐺0.𝑇0
(1) |𝐺 = 0, 𝑇 = 0,𝜓1,𝜓0��� 𝑓(𝜓0|𝜓1)𝑓(𝜓1)𝑑𝜓0𝑑𝜓1 

= � �𝐸 �𝑌𝐺1.𝑇0
(1) |𝐺 = 1, 𝑇 = 1,𝜓1,𝜓0�

𝜓1𝜓0

− 𝐸 �𝑌𝐺1.𝑇0
(0) |𝐺 = 1, 𝑇 = 0,𝜓1,𝜓0�� 𝑓(𝜓0|𝜓1)𝑓(𝜓1)𝑑𝜓0𝑑𝜓1

+ � ��𝐸 �𝑌𝐺1.𝑇1
(1) |𝐺 = 1, 𝑇 = 1,𝜓1,𝜓0�

𝜓1𝜓0

− 𝐸 �𝑌𝐺1.𝑇0
(1) |𝐺 = 1, 𝑇 = 0,𝜓1,𝜓0��

− �𝐸 �𝑌𝐺0.𝑇1
(1) |𝐺 = 0, 𝑇 = 1,𝜓1,𝜓0�

− 𝐸 �𝑌𝐺0.𝑇0
(1) |𝐺 = 0, 𝑇 = 0,𝜓1,𝜓0��� 𝑓(𝜓0|𝜓1)𝑓(𝜓1)𝑑𝜓0𝑑𝜓1 

= 𝛿𝐺1.𝑇0. 
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