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Abstract
In practice many applications of small area models use a ‘Normal-Normal-Linear’ assump-

tion, i.e., a normality assumption for the design-based survey estimates and for the area-level
random effects and a linear regression function relating the true parameters to available co-
variates. We compare the performance of rate models by slightly changing the assumptions
and using internal and external checks. when area sample sizes are in the hundreds, empiri-
cal analyses using a ’Normal-t-Linear’ to protect against outliers, or a seemingly reasonable
‘Beta-logistic’ assumption for rates, show no gain over the ‘Normal-Normal-Linear’ type
model. However, the same type of analyses show additional benefit from including histor-
ical data through a cross-sectional and time series model. We use Monte Carlo Markov
Chain (MCMC) to implement the proposed models, posterior predictive checks, as well as
external checks for model comparisons.

Key Words: Small Area Estimation, SAIPE, Time-Series and Cross-Sectional model,
Posterior Predictive Checks.

1. Introduction

In this paper we compare the performance of a few small area models and assess the
benefit from incorporating additional information into model features. The specific
focus of our data analysis is on the U.S. Census Bureau’s Small Area Income and
Poverty Estimates program (SAIPE) models. SAIPE uses area level models to
develop state and county estimates of poor school-age children. These estimates
are an important component of the administration of federal funds each year under
Title I of the Elementary and Secondary Education Act.

The SAIPE production models are of the Fay Herriot type (see Fay & Her-
riot (1979)), which we will denote throughout the paper by FH. These models
use a ‘Normal-Normal-Linear’ assumption, i.e., normal distributions for the ‘direct’
design-based estimates and for the area-level random effects, and a linear regres-
sion function relating the true poverty rates to covariates from administrative and
other data sources. The SAIPE models have been widely reviewed and evaluated
(see for example the NRC Report, Citro and Kalton eds., 2000). The NAS panel
also recommended continued research to determine if we can improve upon the
current production models. Wiezcorek, Nugent & Hawala (2012), use a sampling
design, roughly consistent with that of the American Community Survey (ACS),
to show that for more counties the direct survey estimated poverty rate follows a
beta rather than a normal distribution and that a zero-one-inflated beta regression
model outperforms the SAIPE FH model, estimated on the non-zero observations,
with regards to bias, mean square error (MSE), and confidence interval coverage.
Nugent & Hawala (2012) use a censored FH model, analogous to that in Slud et al.
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(2011), to reveal the bias incurred when we drop the poverty counts that are zero
from the estimation procedure.

In general, small area models can improve upon ‘direct’ i.e., survey-only esti-
mates in several ways. Models use auxiliary information, available for all areas,
as covariates to predict area characteristics such as poverty rates. Estimation of
model parameters use the auxiliary data from all areas, consequently allowing areas
to borrow information (strength) from each other. This is especially important for
areas where survey data on the area characteristic of interest are not available. The
models that allow for borrowing strength across areas are labeled cross-sectional.
Models can also take into account repeated observations, such as annual surveys.
For example, last year’s poverty rate provides some information on the current
year’s poverty rate. Models that use data collected at previous time points, labeled
time-series, borrow strength across time. Models that use information both from
other areas and other time points are labeled time-series and cross-sectional. Work
in this area include those of Pfeffermann and Burck (1990), Rao and Yu (1994),
Ghosh et al. (1996), and Datta et al. (1999).

Our main application focuses on the SAIPE state model. Our data analysis
uses the Current Population Survey (CPS) state data for model comparisons. The
SAIPE program produces state and county level annual estimates of poverty rates
and counts of poor school age children using a Bayesian and empirical best (EBLUP)
estimation of a FH type model. For more details on the SAIPE methodology the
reader should consult Bell et all (2007). From 1993 to 2005, SAIPE fitted the
models to direct income and poverty estimates from the Annual Social and Economic
Supplement (ASEC) of CPS, which is administered in March of each year. Starting
in 2006, the response variable in the state model became the direct estimate of the
poverty percentiles from the ACS. In this paper we use CPS-ASEC data to explore
alternatives to the FH model and we compare the results. These data contain
observations made at 11 time points (years), which is a longer time series, than
what is currently available from the ACS.

There is a huge literature on both theory and applications of model-based small
area estimation. For a comprehensive review on the subject, see Rao (2003), or Jiang
and Lahiri (2006). Malec (2005) considers a multivariate multinomial/binomial
model for estimating housing unit characteristics and poverty in census tracts. This
housing unit level model drops the assumptions of normality and known sampling
variances. However, working with unit-level data presents many challenges, not the
least of which is data confidentiality. We focus on area-level models and we do not
pursue unit level models at this time.

The World Bank method for poverty mapping — the so called ELL method —-
developed by Elbers, Lanjouw, and Lanjouw (2003), uses a unit level (e.g., household
level) mixed model that establishes a relationship between a welfare variable and a
variety of explanatory variables that are common between the household survey and
the previous census. The model is fitted using the survey data and the fitted model
is used to multiply impute the welfare variable for all households in the census
file. These “census like files” are then used for producing poverty maps and the
associated measures of uncertainty. For a comprehensive description of the World
Bank methodology and applications of the method in different countries, see Elbers
et al. (2003, 2008), Neri et al. (2005), and numerous other applications in different
countries, see http://go.worldbank.org/9CYUFEUQ30.

Recently, Molina and Rao (2010) put forward an empirical Bayes method for
poverty mapping using a unit level model like the one proposed by ELL except that
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it uses explicitly stated small area specific random effects generally used in small
area estimation. In their paper, they claimed their method to be superior to the
ELL method. However, a common thread in the ELL and Molina-Rao approaches
is the use of census like files with an imputed welfare variable.

The central issue in poverty mapping, just like any other small area estimation
problem, has always been the choice of a specific model-based poverty mapping
technique and not whether one should or should not use models. It is possible
that different poverty mapping methods may be applicable in different situations
depending on the specific needs. For example, if the sample sizes in many small
areas are very small or zero, and various non-sampling errors arising out of the old
census frame and dissimilarity of explanatory variables across survey and the census
(e.g., Tarozzi and and Deaton , 2009) are negligible, the ELL method could be a
sensible method to apply. In the presence of such negligible non-sampling errors,
one can also consider the Molina-Rao method if most of the small areas have some
sample in them.

The ELL method is based entirely on imputed data. The Molina-Rao method,
on the other hand, uses actual survey data. However, unlike the ELL method,
the Molina-Rao method requires linking of the survey data to the previous census
data at the household level, which can be a formidable task. In addition, the non-
sampling errors issues raised earlier may be problematic.

We develop our paper as follows. In section 2.1 we use the year 1989 CPS-ASEC
data, and a common set of regressors to compare two different cross-sectional small
area models to the FH model. In section 2.2 we use eleven years of CPS-ASEC
data to estimate a time-series and cross-sectional model. In section 3 we discuss
model evaluations and comparisons. Section 4 concludes our paper by providing a
summary of our findings and directions for further research.

2. Data Analysis

2.1 Cross-Sectional Models

We used Markov Chain Monte Carlo (MCMC) estimation available in R (R De-
velopment Core Team, 2012) and JAGS (Plummer, 2003) to test alternatives to
modeling the CPS-ASEC state data. In what follows we present the formulation of
two basic cross-sectional models, a FH type model with normally distributed ran-
dom effects, a FH model but with a t distribution for the random effects (denoted
as FH t) and a Beta-Logistic model (denoted as BL).

2.1.1 The Fay Herriot model for poverty rates

In the state level CPS-ASEC data, we have m = 51 areas (50 states and the District
of Columbia). For i = 1, . . . ,m, let pi and Pi be the CPS-ASEC weighted estimate
and the true rates of children in poverty in state i, respectively. Just as in the
SAIPE models we assume that the sampling variances Di are known without error.
In reality the Di’s are estimated via a GVF function, see Bell et al. (2007).

Let β be a vector of k regression parameters including the intercept.

pi|Pi
ind∼ N (Pi, Di)

Pi = xi
′β + ui

ui|σ2u
iid∼ N

(
0, σ2u

)
f(β, σ2u) ∝ Nk(0, (1/ε)Ik)

3
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where Ik is the k × k identity matrix. In this model, we set a ‘noninformative’
(or weakly informative) prior Uniform(0, 1ε ), with ε = 10−6, on the random-effects
variance parameter σ2u. Also for each of the k − 1 regression parameters βj , j =
1, . . . , k − 1, independently, we use a vague normal prior with ε = 10−6.

Through simulations, based on the original structure of the CPS-ASEC data but
with known true values for the fixed effect, variance parameters, and estimation of
the variance component model:

pi = β0 + ui + ei, i = 1, . . . ,m

ui
iid∼ N

(
0, σ2u

)
, ei

ind∼ N (0, Di)

we found that other non-informative prior distributions, such as the uniform U(0, 1ε ),
on σu, suggested by Gelman (2006), and the gamma Γ(ε, ε) on 1/σ−2u produce
incorrect inferences for the FH model.

In the full model the matrix X consists of a column of 1′s and 4 covariates
making up the other 4 columns (so here k = 5):

• x1: state rate of IRS Child Tax-Poor Exemptions

• x2: state rate of IRS non-filers

• x3: state rate of Food Stamp participation

• x4: “census residuals” obtained by regressing previous census poverty per-
centiles on the three preceding variables concurrently measured with the cen-
sus.

For each area i the IRS poverty rate xi1 is the number of child exemptions for the
households in the area, whose reported adjusted gross income is under the poverty
level, divided by the total number of child exemptions for all households in the area.

We carry out 3 runs of the MCMC sampler for 20,000 iterations each, taking
every 4th, and following a 5,000-iteration burn-in period. We use the popular
Gelman and Rubin (1992) diagnostic measure to monitor convergence for the model
parameters and the small area means. In our analysis, we check and see if Gelman’s
“potential scale reduction” factors are all 1.

Table 1 shows posterior means and standard deviations of the FH model param-
eters.

Table 1: FH model parameter posterior means and standard deviations

Parameter Mean SD

Intercept 0.006 0.02
β1 0.53 0.10
β2 0.23 0.15
β3 0.70 0.22
β4 0.72 0.37
σu 0.012 0.006

4
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2.1.2 The Fay Herriot model with t distribution

The FH type model has been thoroughly tested and reviewed. However, the nor-
mality assumption for the random effects is not easy to check and does not protect
against possible outliers in the data. For this reason we compare the FH model to
the ’Normal-t-Linear’ (FH t) model.

The model formulation when we replace the normal distribution by a t distribution
becomes:

pi|Pi
ind∼ N (Pi, Di)

Pi = xi
′β + ui

ui|σ2u
iid∼ t

(
0, σ2u, ν

)
f(β, σ2u) ∝ Nk(0, (1/ε)Ik)

The t distributions have heavier tails than normal distributions, researchers use
them as a robust approach to handle influential outliers or, in our case, excessively
small or large direct survey weighted observations. We initially let the degrees of
freedom ν be a random parameter and set a categorical distribution as a prior on
ν, in the range {2, . . . , 50}. We obtained a credible interval covering the entirety of
this range. Moreover, in view of the results obtained in Bell and Huang (2006), we
estimated the remaining parameters by setting ν = 8.

Table 2 shows posterior means and standard deviations of the FH t model pa-
rameters.

Table 2: FH t model parameter posterior means and standard deviations

Parameter Mean SD

Intercept 0.007 0.02
β1 0.54 0.11
β2 0.22 0.16
β3 0.68 0.23
β4 0.72 0.38
σu 0.011 0.005

2.1.3 A Beta-Logistic Regression model

Since we are modeling rates in (0, 1) we explored a ‘Beta-logistic’ assumption, i.e.,
a beta distribution for the survey-weighted rates, and a logit regression relating
covariates to the true poverty rate. The modeling approach using the beta distribu-
tion simultaneously accounts for the asymmetry of the distribution of poverty rates
and the non-constant nature of the variance. Again let Pi denote the true poverty
rate in state i and let pi denote the estimated (through CPS-ASEC) poverty rate
in state i. The density function of the beta distribution (with parameters a and b)
is

f(p|a, b) =
Γ(a+ b)

Γ(a)Γ(b)
pa−1(1− p)b−1

We use the same first three covariates as in section 2.1.1 (tax poverty rate,
tax non-filing rate, food stamp participation rate). We did not use the ’Census
Residuals’ because of lack of convergence of the MCMC when we include this last
covariate. With the logit link function, transforming the true poverty rate P , the

5
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regression parameters can be interpreted in terms of odds ratio. The inverse-logit
back-transformation guarantees P to be in (0, 1).

In order to incorporate the information from the covariates into a beta regression
model, we parameterize the beta family in terms of its mean, P = E(p|P ) = a

a+b ,
and a parameter related to its variance, γ = a + b. Inversely, the parameters a, b
can be expressed as a = γP and b = γ(1 − P ). Note that the variance of a beta
distribution is

V ar(p|P ) =
P (1− P )

γ + 1
=

ab

(a+ b)2(a+ b+ 1)

The variance does depend on the mean P , and larger values of γ correspond to less
heterogeneity in the data.

Assuming the sampling variances Di are known, we can rewrite V ar(pi|Pi) as a
variance of rate estimates rescaled by γi + 1:

Di = V ar(pi|Pi) =
Pi(1− Pi)
γi + 1

This leads to

γi =
Pi(1− Pi)

Di
− 1

The Bayesian beta-logistic model we consider along with the prior distributions
is as follows:

pi|Pi
iid∼ Beta (γiPi, γi(1− Pi))

logit (Pi) = x′iβ + ui

ui|σ2u
iid∼ N (0, σ2u)

f(β, σu) ∝ Nk(0, (1/ε)Ik)

We use the same hyper-parameter values as in the previous section; ε = 10−6.
However, the prior on random effect variance parameter is now Uniform(0, 1ε ). The
posterior estimates for the parameters in this BL model are given in Table 3.

Table 3: BL model parameter posterior means and standard deviations,
parameters here are on logit scale

Parameter Mean SD

Intercept −2.82 0.18
β1 4.36 0.94
β2 1.87 1.46
β3 3.44 1.90
σu 0.218 0.129

2.2 Time-Series and Cross-Sectional Model

The analysis of data from either the CPS or the ACS annual surveys cannot ignore
the autocorrelation over time. It is especially relevant when modeling ACS county
data, where an area may have no poor people in sample one year, leading, unre-
alistically, to an ACS direct survey estimate of zero for that year. It is reasonable
to borrow information from data collected in previous years for the same area to

6
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estimate the true rate for the year when data are unavailable. To get some idea
of the poverty rate over time, we plotted the state level IRS poverty rate for DC,
California (CA), NH, and CT, see Figure 1. We also we plotted the state level CPS
poverty rate for 11 years for four areas - the National rate, for New Hampshire
(NH), the District of Columbia (DC), and Connecticut (CT), see Figure 2. These
figures show that for large areas CA and US the past is a strong predictor for CPS
and IRS poverty rates. For smaller areas the CPS rates can vary considerably in
time.

Figure 1: IRS poverty rates over time
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Figure 2: CPS poverty rates over time
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To borrow information across time we incorporate a time series component by
considering an autoregressive model of order 1 (AR(1)) on the true rate P , similar
to Rao and Yu (1994) but with regression parameters βt varying with time t. In this
paper our time-series and cross-sectional (TSCS) model uses CPS-ASEC data on
income from T = 11 years (1989-1993, 1995-2000) on each of the 50 states and the
District of Columbia, m = 51 areas. 1994 data were not available because SAIPE
production, of model based estimates, started in 1993 but skipped 1994. We will
assume that skipping 1994 has no effect on our model estimation.

Let pi,t be the direct survey estimator, of the true percent in poverty Pi,t, for
the i-th small area at time point t, (i = 1, . . . ,m; t = 1, . . . , T ). pi,t is assumed
to be unbiased for Pi,t. As in the FH model, of section 2.1.1, we assume that the
sampling variances Dit are known.

2.2.1 AR(1) Time-series and cross-sectional, Fay Herriot structure

The next set of statements and equations describe the formulation of an AR(1)
time-series and cross-sectional model in the Fay Herriot structure. Let ρ be the

7
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first order autoregressive parameter.

pi,t|Pi,t
ind∼ N (Pi,t, Di,t)

Pi,t = x′i,tβt + ui + ηi,t

ηi,t = ρηi,t−1 + εi,t, |ρ| < 1

ui|σ2u
iid∼ N (0, σ2u)

εi,t
iid∼ N (0, σ2η)

f(β, σ2u, ρ) ∝ Nk(0, (1/ε)Ik)

We assume that the component ηi,t of the model errors follow an autoregres-
sive process of order 1, so that, for any t = 1, . . . , T , and any i = 1, . . . ,m, the
correlations of these errors at lag s is

Corr(ηi,t, ηi,t−s) = ρs, s = 0, . . . , T − 1

For the prior distributions we again use ε = 10−6. In Table 4, we provide the
posterior estimates of the autocorrelation coefficient ρ and the (square roots) of the
variance components: σu and ση.

Table 4: TSCS autocorrelation and variance components posterior means and
standard deviations

Parameter Mean SD

ρ 0.60 0.185
σu 0.017 0.009
ση 0.012 0.006

Figure-3 shows the estimates of the TSCS models’ regression parameters βt and
their values for the 11 years.

Figure 3: TSCS model regression parameters for 1989-1993; 1995-2000
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3. Model Checks and Comparisons

3.1 Internal Checks

We explored several diagnostic tools to assess the adequacy of the models we con-
sidered. We used the same MCMC method used for estimation, to calculate model
checks, each of which looks for a particular flaw in the model but cannot confirm the
correctness of the model as a whole. We can check the adequacy of the model fit,
and appropriateness of model assumptions using the predictive distribution. This
distribution enables “criticism” of the model in light of the current data. Our main
interest is in comparing models. For this purpose, predictive distributions are di-
rectly comparable while posterior distributions are not. So we don’t focus only on
the posterior means and variances, which are parametrized by the model.

Hierarchical models in general require several assumptions at each level of the
hierarchy. It is more likely to obtain misleading inferences if any of the multiple
parts of the model is poorly specified. The presence of multiple sources of variation,
coming from each level of the model, make residual analyses, for example, more
complicated because of possible confounding in the sense that the residuals are
errors emanating from multiple sources.

Researchers usually take two broad approaches: model checking and sensitivity
analysis. In the first they try to inspect the results to determine if any of the
assumptions are plainly violated and if the model cannot reproduce some features
of the data. In the second, modifications are made to the assumptions in question
and changes in posterior quantities are evaluated for practical significance.

We first try to determine if the models provide adequate fit to the data. We
use posterior predictive checks as in Gelfand, Dey and Chang (1992), Rubin (1984),
Meng (1994) and Gelman, Meng and Stern (1996). Again, these checks may be
necessary, but they are not sufficient. Inconsistencies between the proposed model
and ‘the true model’ may not even be detectable.

If the model fits to pobs are adequate, replicated values pnew generated from the
model would be similar to pobs. We generate replicates from the posterior predictive
distribution:

f(p|pobs) =

∫
f(p|θ)π(θ|pobs)dθ

where f(p|θ) is the likelihood function and π(θ|pobs) is the joint posterior distri-
bution of all the model parameters θ given the data pobs. We use the posterior
predictive distribution to calculate the following divergence measure proposed in
Laud and Ibrahim (1999) :

DLI = d(pnew,pobs) = E
(
‖ pnew − pobs ‖2 |pobs

)
approximated by

D̂LI =
1

mK

K∑
k=1

‖ p̂new − pobs ‖2

In comparing models, the one resulting in the smallest DLI outperforms the others.
We give values of D̂LI for each model in Table 5.

9
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Table 5: Laud & Ibrahim Measure

Model DLI

√
DLI

FH 0.00166 .0407
FH t 0.00200 .0447
BL 0.00280 .0529
TSCS 0.00165 .0406

We calculated the following Bayesian posterior predictive quantities:

• pD = Pr (D(pnew,θ) > D(p,θ)), where

D(p,θ) =
m∑
i=1

(pi − E(pi|θ))2

V ar(pi|θ)

This is a summary measure from Gelman et al. (2004) - an omnibus measure of
goodness-of-fit. pD is the probability of observing a sum of squared “residuals”
much different than the one obtained from the data. Unlike p values in the
classical statistics framework which are sought to either reject or not reject a
hypothesis, small or large pD’s will cast doubt on a model but not outright
reject it. A small or large pD (less than .01 or bigger than .99) suggests a
discrepancy between the data and the model.

We also calculated p values for each of the m order statistics. For example,

• Q(1)p = p-value for agreement of the smallest data values in the observed and
artificial (replicated) datasets. Q(1)p = Pr

(
p(1),obs ≥ p(1),new|pobs

)
• Q(m)p = p-value for agreement of the largest data values in the observed and

artificial (replicated) datasets. Q(m)p = Pr
(
p(m),new ≥ p(m),obs|pobs

)
• In general Q(i)p = p-value for agreement of the ith order statistic p(i) in the

observed and artificial (replicated) datasets.

Q(i)p = Pr
(
p(i),obs ≥ p(i),new|pobs

)
For a model comparison we summarize the p values for the order statistics
for the CPS-ASEC 2000 data in Figures 4 and 5.

10
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Figure 4: FH and BL models -
CPS-ASEC 2000 data
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Figure 5: FH and TSCS models -
CPS-ASEC 2000 data
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Finally we calculated for each i the - individual - posterior predictive p-values
(ppp-values) defined as:

p̂ valuei = Pr (pi,new ≤ pi,obs|pobs) ; i = 1, . . . ,m.

We made Q-Q plots of the m values of p̂ valuei comparing their distribution to the
uniform distribution as a reference. These plots did not reveal anything for model
comparisons. They are not included in this paper but available from the authors.

3.2 External Checks

All of our internal checks did not reveal much in terms of relative model performance.
We turned to comparisons between model estimates of poverty rates based on 1989
CPS and census 1990 poverty rates. The national poverty rates from 1989 CPS
and from census 1990 were ycps89nat = 18% and ycen90nat = 17.5% respectively. We
ratio-adjusted the model estimates of the state rates Ŷi to obtain

Ŷ R
i =

ycen90nat

ycps89nat

Ŷi = .9721Ŷi

then we calculated and plotted the differences

diffi = Ŷ R
i − Ŷ cen

i

We would like to mention that, upon review of this paper, William Bell brought
to our attention a different way of adjusting the rates for comparisons. We also
thought of modifications to his approach. We hope to work on these issues and
publish the results in a subsequent paper.

We also calculated the ’absolute relative differences’

ardiffi =

∣∣∣∣∣ Ŷ R
i

Ŷ cen
i

− 1

∣∣∣∣∣
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We calculated the differences diffi in two instances. One where the estimates
Ŷi are from models without covariates to get diffno covi and another with all four
covariates to get diff covi . We summarize these straight differences in the next two
figures: Figure 6 and 7.

Figure 6

stnamestatecm1p - cen90pcmtp - cen90pcm4p1 - cen90pbetnp - cen90p
1  AL1 -0-0-0-0
2  AK2 0 0 0 0
3  AZ4 0 0 -00
-0-0-0-0-0-0-0
5  CA6 0 0 0 -0
6  CO8 -00 -0-0
7  CT9 -0-0-0-0
8  DE100 0 0 0
9  DC11-0-00 -0
10 FL12-0-00 -0
11 GA13-0-00 0
12 HI150 0 0 0
13 ID16-0-0-0-0
14 IL170 0 0 0
15 IN180 0 0 0
16 IA190 0 -00
17 KS200 0 -00
18 KY21-0-0-0-0
19 LA22-0-0-0-0
20 ME230 0 0 -0
21 MD240 0 0 -0
22 MA250 0 0 0
23 MI260 0 -00
24 MN270 0 0 0
25 MS28-0-0-0-0
26 MO29-0-0-0-0
27 MT300 0 -00
28 NE310 0 -00
29 NV320 0 0 -0
30 NH330 0 0 0
31 NJ340 0 0 0
32 NM35-0-0-0-0
33 NY36-0-00 -0
34 NC37-0-00 -0
35 ND38-0-0-0-0
36 OH39-0-0-0-0
37 OK40-0-0-0-0
38 OR41-08.38E-05-0-0
39 PA420 0 -0-0
40 RI44-0-0-0-0
41 SC450 0 0 -0
42 SD46-0-0-0-0
43 TN470 -0-0-0
44 TX48-0-0-0-0
45 UT49-00 -0-0
46 VT50-0-00 -0
47 VA510 0 -0-0
48 WA530 0 -0-0
49 WV54-0-0-0-0
50 WI55-0-0-0-0
51 WY560 0 -0-0
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8.32667E-17
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Deviations (from Census) based on 1989 CPS  - No Covariates

FH FH_t TSCS BL

Figure 7

stnamestatecm1p - cen90pcmtp - cen90pcm4p1 - cen90pbetnp - cen90p
1  AL 1 -0 -0 -0 -0
2  AK 2 0 0 -0 0
3  AZ 4 0 0 -0 0
4  AR 5 -0 -0 -0 -0
5  CA 6 0 0 0 -0
6  CO 8 0 0 -0 -0
7  CT 9 -0 -0 -0 -0
8  DE 10 -0 -0 0 0
9  DC 11 -0 -0 -0 -0

10  FL 12 -0 -0 -0 -0
11  GA 13 -0 -0 -0 0
12  HI 15 0 0 0 0
13  ID 16 0 0 0 -0
14  IL 17 0 0 0 0
15  IN 18 0 0 -0 0
16  IA 19 -0 -0 -0 0
17  KS 20 0 0 -0 0
18  KY 21 -0 -0 -0 -0
19  LA 22 -0 -0 -0 -0
20  ME 23 0 0 0 -0
21  MD 24 0 0 -0 -0
22  MA 25 -0 -0 0 -0
23  MI 26 -0 -0 -0 0
24  MN 27 0 0 0 0
25  MS 28 -0 -0 -0 -0
26  MO 29 0 0 -0 -0
27  MT 30 -0 -0 -0 0
28  NE 31 0 0 0 0
29  NV 32 0 0 -0 -0
30  NH 33 0 0 0 0
31  NJ 34 0 0 0 0
32  NM 35 -0 -0 -0 0
33  NY 36 -0 -0 -0 -0
34  NC 37 -0 -0 0 -0
35  ND 38 -0 -0 -0 -0
36  OH 39 -0 -0 -0 -0
37  OK 40 -0 -0 -0 -0
38  OR 41 0 0 0 -0
39  PA 42 0 0 -0 0
40  RI 44 -0 -0 -0 -0
41  SC 45 -0 -0 -0 0
42  SD 46 -0 -0 -0 -0
43  TN 47 0 0 0 0
44  TX 48 0 0 -0 -0
45  UT 49 0 0 0 -0
46  VT 50 0 0 0 -0
47  VA 51 0 0 -0 0
48  WA 53 0 0 -0 -0
49  WV 54 -0 -0 -0 -0
50  WI 55 -0 -0 -0 -0
51  WY 56 -0 -0 -0 -0

-0.15

-0.125

-0.1

-0.075
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5.99992E-13
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Deviations (from Census) based on 1989 CPS  - With Covariates

FH FH_t TSCS BL

We did the same for the absolute relative differences, i.e. with and without
covariates. These are summarized in the next two tables: Figures 8 and 9.
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Figure 8

Figure 9

4. Conclusions

The Bayesian posterior predictive checks did not clearly reveal differences in perfor-
mance between the models we considered. Our work followed several of the authors
mentioned already. It mainly consists of calculating Bayesian p values, which Hjort
et al. (2006) described as measures of degree of surprise from data, given the prior
and the model.

One of the measures for model comparisons that indicated a small difference
between the models’ performance is (DLI) the one due to Laud and Ibrahim. Using
DLI , neither the Fay-Herriot model with random effects distributed as t, nor the
Beta logistic model introduce any improvement. In fact the usual Fay-Herriot model
does better in both cases.

The Bayesian p values for the order statistics show that there are problems
with all four models in fitting the lower and upper tails of the distribution of p.
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This is also true for other values as we move away from the median. Overall, the
model predictions tend to be smaller than the observed data at the left tail of the
distribution and the predictions are larger at the right tail of the distribution. For
the FH model, about 50% of the p values are above .6 and only about 12% are
below .4. The highest ones are for the first order statistic Q(1)p ≈ .98. The lowest
ones are for the last order statistics Q(m)p ≈ .14.

As we expected, and as the external checks show, there is a 5% gain in efficiency,
on average, through borrowing strength from previous years of CPS-ASEC data.
An absolute relative difference is analogous to a coefficient of variation. However,
this gain is not as big (1% on average) when we use all the covariates in the model.
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