
Assessing Variable Importance in Environmental 
Observational Studies

                              S. Stanley Young and Jessie Q. Xia
                              National Institute of Statistical Sciences    
                              Research Triangle Park, NC 27709       

Abstract: In environmental observational studies, often authors do not address the 
relative importance of variables under consideration, choosing instead to concentrate 
on specific claims of significance. Yet good policy decisions require knowledge of the 
magnitude of relevant effects. In this paper we examine data on the relationship 
between air quality and mortality in the United States. The analysis uses two methods 
for determining variable importance, regression analysis and recursive partitioning, 
showing how this puts predictor variables into a context that supports better 
environmental policy-making. In particular, using both regression and recursive 
partitioning, we are able to confirm a spatial interaction with the air quality variable 
PM2.5, a critical variable in this application domain. We also determine the relative 
importance of this variable in comparison to others used in air pollution research. We 
show that there is no association between PM2.5 and mortality west of Chicago and 
that where there is an association between decreased PM2.5 and increase longevity, it is 
much less important than other variables such as income and smoking. Our findings 
point to somewhat different policy recommendations from those developed by previous 
researchers.

Introduction
The current policy paradigm is that air pollution, as measured by small particles (those 
less than 2.5 micrometers, or PM2.5), is killing people and that it needs to be brought 
under further regulatory control. The Environmental Protection Agency, EPA, speaks of 
more than 160,000 annual deaths attributable to PM2.5; see News Release (2011). The 
EPA bases its case almost entirely on statistical analysis of observational data. 

Pope et al. (2009) cited eight studies (their References 4-11), saying, 

“Associations between long-term exposure to fine particulate air pollution and 
mortality have been observed...more recently, in cohort-based studies. ... all 
support the view that relatively prompt and sustained health benefits are 
derived from improved air quality.” 

On the other hand, Enstrom (2005), after citing papers supporting an association says, 
“Other cohort studies have also examined mortality associations with PM2.5 and other 
pollutants … with somewhat different findings.” There were eight papers that Dr. Pope 
- referred to supporting an association between pollution, PM2.5, and statistical deaths, 
and four papers that Enstrom referred to that cast doubt on the claim. Peng et al. (2006) 
commented, “For example, in air pollution epidemiology, the national relative risk of 
increased mortality is estimated to be 1.005 per 10 parts per billion of 24-hour ozone. 
…. Nevertheless, the potential for unexplained confounding cannot be denied for such 
a small relative risk.” 

When this controversy was breaking in the early 1990s, the EPA asked the National 
Institute of Statistical Sciences to evaluate data from two cities, see Stayer et al. (1995). 
Stayer et al. commented on some of the difficulties, saying “The data used in the 
analyses (meteorological conditions, particulate levels, death counts) are observational; 
that is, data that are measured and recorded without control or intervention by 
researchers. Deducing causal relationships from observational data is perilous. A 
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practical approach described by Mosteller and Tukey involves considerations beyond 
regression analysis. In particular, consideration should be given to whether the 
association between particulate levels and mortality is consistent across 'settings,' 
whether there are plausible common causes for elevated particulate levels and 
mortality, and whether the derived models reflect reasonable physical relationships.” 
They then concluded, “...that the reported effects of particulates on mortality are 
unconfirmed.” Essentially noting the same and additional difficulties, Smith et al. 
(2009) agreed that the case for a significant association of low-level air pollution with 
statistical deaths was unproven: “In summary, it is our view that estimates of the 
association between ozone and mortality, based on time-series epidemiologic analyses 
of daily data from multiple cities, reveal important still-unexplained inconsistencies 
and show sensitivity to modeling choices and data selection. These inconsistencies and 
sensitivities contribute to serious uncertainties when epidemiological results are used to 
discern the nature and magnitude of possible ozone-mortality relationships or are 
applied to risk assessment.”

Krewski et al. (2000) noted that if there are effects, they are heterogeneous, i.e., 
varying across the US. Smith et al. (2009), using complex methods for ozone levels, 
also noted that the effects were not constant across the U.S. In geo-maps, from both 
groups, there are hot spots and vast areas where any affect of air pollution on mortality 
appears minimal to non-existent. Even Krewski (2010) could find no association 
between PM2.5 and mortality in California.

Dr. Pope generously provided the data used in his 2009 New England Journal of  
Medicine paper. Using this data set, we address two questions: Is there evidence for 
effect geographic heterogeneity and what is the relative importance of air pollution 
relative to other factors? In particular, is there evidence for differential effects in the 
western U.S. as opposed to the eastern U.S. Enstrom (2005) finds no effect in 
California, with a relative risk of 1.00 and confidence limits of 0.98-1.02. His results 
are confirmed by CARB consultant Professor Jerrett (2010), with a relative risk of 1.00 
and confidence limits of 0.97-1.03. We computed multiple analyses sweeping across 
the county from west to east and show that one can “cut” along the longitude passing 
just west of Chicago and find no effect of PM2.5 to the west and a small association of 
PM2.5 on statistical deaths to the East. Both Stayer et al. (1995) and Smith et al. (2009) 
make the logical point that if the effect of the pollutant is not consistent, then it is 
unlikely it is a causative agent.

The Pope et al. (2009) based their interpretation on a main effects only analysis, i.e. 
PM2.5 is a statistically significant cause of deaths uniformly across the US. Based on 
our analysis, PM2.5 exhibits different associations with mortality in the eastern and 
western U.S., which suggests that PM2.5 per se is not a causative agent and that a 
single national policy is therefore not appropriate across the entire country. In any case, 
the relative importance of PM2.5 to statistical mortality, as compared to other factors, 
should be taken into account by decision-makers. We will show that PM2.5 exerts 
much less influence on longevity than income, for example.

Data
Pope et al. (2009) started with 2068 county units from which 215 county units in 
metropolitan areas were selected that had matching PM2.5 data available. New York 
areas were consolidated, so ultimately there were 211 records for 51 metropolitan areas 
within the US. The response variable was the change in age-adjusted mortality from the 
early 1980s to the late 1990s. There were ten predictor variables; see Table 1. Note that 
the change in PM2.5 is the same for each unit within a metropolitan area. 
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Methods
Introduction
We use two methods of model fitting: linear regression and recursive partitioning. Regression 
makes relatively strong modeling assumptions whereas recursive partitioning is more non-
parametric. For example it is robust to non-linear relationships.

Regression 
The linear regression model of the following form is considered:
 Y=β0 +β1 X 1+β2 X 2+. ..+β10 X 10+e   (1)
where Y represents the change of life expectancy from the early 1980s to the late 
1990s; X1 to X10 represent the ten covariates given in Pope et al. (2009), including the 
changes of PM2.5, income, high school graduate rate, and two proxy indicators for 
smoking etc, which are listed in Table 1. The residuals ε are assumed to have an 

independent, identical Gaussian distribution with mean of 0 and variance of σ
2
.

Step-wise regression
For the purpose of either variable selection or variable importance assignment, step-
wise regressions are often conducted. In the forward selection mode, the simplest 
model without any regression variables is first fitted: Y=β0 +e . Then one regression 
variable is added to the model, forming a second model: Y=β0 +βi X i +ε . The 
decrease of the residual sum of squares ri is assigned to the regression variable Xi. This 
procedure is repeated, until all ten variables enter the 11th model. Eventually, there will 
be a vector of residual sum of square (r1, r2, …, r10) for the 10 regression variables. If all 
regression variables are independent, the vector will be unique regardless of the 
sequence of the variables entering the linear model in Equation (1). However, if there 
are correlated variables, their ri values will depend on the order that the variable enter 
the linear model.
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Regression variable importance 
Variable importance estimates are achieved by decomposing var(Y) into the parts 
attributable to the individual Xi ’s. There are several methods of variable importance 
assignment based on the linear regression models shown in Equation (1), as described 
in Lindeman et al. (1980) and Grömping (2006, 2007, 2009). In our paper, we use the 
method proposed by Lindeman, Merenda, and Gold (LMG). It considers all the 10! = 
3,628,800 permutations of the stepwise regression using the 10 regression variables. 
The method is computationally intensive, but there is free code to do the analysis in R, 

see Grömping (2006). Let (r1
(k)

, r2
(k)

, …, r10
(k)

) represents the k
th

 variable importance 
assignment for the regression variables, the final variance importance assignment is just 
the average importance over all the permutations: 

            r i=
1

10 ! ∑k=1

10 !

ri(k ) , i=1,… ,10  .                                                           (2)

For two correlated variables, a single stepwise regression will diminish the relative 
importance of the variable that enters the regression model at a later time, whereas the 
LMG method averages across all possible full-term stepwise regressions and assigns a 
more balanced value of importance to both variables. 

Single tree
Recursive partitioning (RP) is a data mining method useful for uncovering complicated 
relationships in large, complex data sets. These relationships may involve thresholds, 
interactions, and nonlinearities. Any or all of these relationships hinder an analysis 
based on the standard assumptions in multiple linear regression. RP was originally 
designed for automatic interaction detection; see Morgan and Sonquest (1963). The 
method has been subject to much development and is widely used for complex 
modeling situations; see Hawkins (2009) for a short review. The basic analysis strategy 
of recursive partitioning is simple and easily understood by example. Consider an 
analysis of the Pope data set for the eastern US; see Figure 1. 

Figure 1. Recursive Partitioning analysis selects the best predictor, Change in Income, 
and makes two "cuts" splitting the predictor into three groups with Life Expectancy 
increasing with increased income. Each of the three nodes is split in turn by variables 
that are surrogates for smoking, Lung Cancer and COPD. The difference of Life 
Expectance from the node with lowest increase in income to the highest is about 1.5 
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years. Lung Cancer and COPD confer about 0.8 years in increased life expectancy. 
Three p-values are given: the raw p-value, P, is unadjusted; aP is adjusted for the 
number of ways to cut the predictor into categories; bP is adjusted for cuts and 
variables available for making a cut.

The 185 observations from the Eastern US are in the top node, denoted by N. Also 
given within a node are summary statistics that show the mean (u), standard deviation 
(s) and p-values used in the splitting process. All potential predictor variables are 
examined and the variable with the smallest adjusted p-value is used to split the node 
into two or more daughter nodes. In this case, Change Income is the variable with the 
smallest adjusted p-value. Segmentation is used to find the optimal "cut points", 
making in this case three daughter nodes, denoted by N1, N2 and N3 respectively. The 
p-value for this cut is adjusted to reflect the number of variables available and the 
number of ways the segmentation can be done, as well as the number and placement of 
the cuts. Each of the daughter nodes is examined in turn and is split if significant. 
Nodes N1 and N3 use COPD to split and Node N2 is split using Lung Cancer. Pope et  
al. (2009) used both COPD and Lung Cancer as surrogates for smoking. Each node is 
split in turn and the recursive splitting stops when there are no statistically significant 
splits to be made. Notice that at each level of the tree building that the standard 
deviation in each node gets smaller as splitting progresses. Tracing from N to N1 to 
N11 we see the standard deviations decrease as 0.94, 0.8 and 0.7, respectively.

Multiple trees
There are advantages (more accurate predictions and the ability to assess variable 
importance) to computing and using multiple trees in the analysis of a data set; see 
Hawkins and Musser (1999, 2001). Multiple trees can be computed by sampling with 
replacement multiple random samples from the data set and computing a tree for each 
such sample; see Breiman (2001). Alternatively, at a split, one can randomly sample 
one of the valid split variables to make the split; see Hawkins and Musser (1999, 2001). 
Once one has multiple trees, they can be used to determine variable importance. One 
can compute how often a variable is used over all the multiple trees. Alternatively, the 
split variable controls all the samples below it so, across the multiple trees, the fraction 
of the observations controlled by a variable can be computed. The latter method is used 
by Optimus Recursive Partitioning (Optimus RP) from Golden Helix (Bozeman, MT) 
and we report its results.

Results 
It is perhaps not appreciated by the general scientific community, but it is well-known among 
experts that air quality has a differential effect on mortality in eastern and western U.S. with 
essentially no effect in the west; see Krewski et al. (2000), Enstrom (2005), Smith et al. 
(2009), Jerrett (2010). As these results are based on several data sets with analyses done by 
several teams of investigators independently, the no-detectable-effect on mortality of PM2.5 
in the West appears to be real. One explanation is that PM2.5 is based on physical particle 
size, not specific chemical composition. Bell et al. (2007) report that there is both temporal 
and spatial variation in the chemical composition of PM2.5. With the dataset of Pope et al. 
(2009), we confirm the geographic heterogeneity of PM2.5 health effects, and that there is no 
detectable effect in the western U.S. Figure 2 gives scatter plots of change in Life Expectancy 
versus PM2.5 for the eastern and western U.S. 

Section on Risk Analysis – JSM 2012

2341



(a) East                                           (b) West

Figure 2. Change in Life Expectancy(Change LE), in (a) East US is positive with respect to 
Change PM2.5 whereas it is not statistically significant in (b) West US.

A linear regression for the eastern and western subsets finds a significant increase in 
mortality for the East, but not for the West; the slopes for the two regression lines (not 
shown) are significantly different from one another, with p-value 0.0063. To better 
understand the effect of PM2.5 across the US, we computed the regression of longevity 
on PM2.5, stepping across the U.S. from west to east and from east to west and we give 
the slope of the regression line as we go (figure not shown). So the Pope et al.'s claim 
that life expectancy increases with a decrease in PM2.5 is supported in eastern U.S., but 
is not supported in western U.S. 

Note that Change in Income has a more dramatic affect on increase in life expectancy 
than reduction in PM2.5, Figure 3.

Also note change in income appears equally effective in East and West, Figure 4.
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Variable importance for the eastern U.S. and western U.S. is computed using the 
regression method of LMG and the recursive partitioning method in Optimus RP. The 
variable importance results are given in Table 2. 

Variable importance for the eastern U.S. and western U.S. is computed using the 
regression method of LMG and the recursive partitioning method in Optimus RP. The 
variable importance results are given in Table 2. 

Table 2. Variable importance, ranked by importance in East US. Importance by linear 
regression uses all 10! permutations of the order of the variables. “Recursive 
Partitioning” is importance by Recursive Partitioning using 1000 trees. Note, in bold, 
the differences in importance of PM2.5 in East and West. PM2.5 has little or no 
importance in the West.

The predictor variables are given in the order of their importance in multiple linear 
regression in the eastern U.S. Increase in income is the most important variable for 
predicting improved mortality, in both eastern and western U.S., and for both the 
regression and the RP variable importance methods. Lung Cancer and COPD are about 
equally important in the eastern U.S. COPD and PM2.5 are relatively unimportant in 
the western U.S. The Percent Graduating from High School and PM2.5 are about 
equally important in the eastern U.S. Regression analysis indicates that %Black and 
Population Density are important in the western U.S., but not very important in the 
eastern U.S. Both regression and RP put the importance of PM2.5 in fourth place 
among the predictors, and roughly equal in importance to a high school education. Both 
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linear regression and recursive partitioning indicate that PM2.5 is unimportant in the 
western U.S.

Discussion
The problems of observational studies have been well-known for many years; see 
Mayes et al. (1988) and Feinstein (1988) for discussion. But there has been little or no 
progress in adopting better methods; see Pocock et al. (2004) and Boffetta et al. (2008). 
The end result is that most claims that are based on observational data fail to replicate 
on retesting; see Ioannidis (2005) and Young and Karr (2011). 

The association between PM2.5 with mortality, when compared to the associations 
between other variables and mortality shows that the importance of PM2.5 is relatively 
small. There is no measurable association in the western U.S., although it accounts for 
about 11% of the variance in the eastern U.S. 

All analysis indicates that changes in income and several other variables are more 
influential than PM2.5, so policy makers might better focus on improving the economy, 
reducing cigarette smoking, and encouraging people to pursue education.

However, there are bigger lessons in this analysis. In 1985, Richard Feynman (1997) 
said, "In summary, the idea is to try to give all the information to help others to judge 
the value of your contribution; not just the information that leads to judgment in one 
particular direction or another." In sharp contrast, Glaeser (2006), describing what he 
considers the current state of affairs, says, "Certainly, there is no sense in which 
standard techniques have been adjusted to respond to researcher incentives. … The 
same incentives that induce researchers to data mine will induce them to avoid 
techniques that appropriately correct for that data mining." And there is a need to know 
"how to adjust statistical inference for researcher initiative." Researcher initiative for 
Glaeser is the use of data selection, statistical methods and language to support the 
author’s narrative. Ioannidis (2008) points to similar researcher initiative issues in 
epidemiology studies, saying “However, this is counter-intuitive to the discovery 
process. One makes exploratory analyses specifically to find something. The effects 
selected for presentation are likely to be among the largest observed, if not the largest 
possible.” 

Others discuss the problems with complex modeling. Friedrich Hayek in his Nobel 
Prize lecture of 1974 described the situation of complex modeling outside the area of 
the physical sciences where theory offers guidance on which variables need to be 
measured. In non-physical sciences, one might simply use available measurements. In 
physical sciences the number of relevant variables can be small and the relationships 
simple, whereas in complex biological systems both the number of variables and how 
they are related can be very complex, which Hayek called essential complexity.

With a large number of variables and complex relationships, laymen have essentially 
no ability to discern the validity of the model. Even experts will have trouble 
evaluating claims based on models. Debunking invalid models is difficult because the 
models are complex and because people and institutions tend to become invested in 
those models. We summarize the Hayek argument: There are multiple factors that are 
likely to impinge on a phenomenon of interest and many of these factors may not be 
measured or even measurable. Outside of the physical sciences we have little theory to 
guide us on what needs measuring. These unavailable factors can lead to biases that 
may be on the same order of magnitude as the phenomenon under study. In our case, 
the study of factors associated with mortality, the mechanism is one of essential 
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complexity. The statistical modeling process is not simple, so even experts find it 
difficult to judge the validity of the analysis. 

It makes good sense that any risk mitigation plan should take alternative regulatory 
strategies into account, Science and Decisions (2008), so knowing the relative 
importance of variables associated with risk is important. In this case, would money be 
better spent on education and anti-smoking education? Also, general economic 
development would likely contribute more to longevity than costly attempts to reduce 
PM2.5.

There are technical and operational fixes to control for researcher initiative. A good 
start would be for journals to require authors to clearly state how many questions are 
under consideration, to evaluate their relative importance, and to make data used in the 
publication publicly available. For simple and rather complex multiple testing 
questions, resampling-based adjusted p-values can be computed to adjust for the 
comparisons; see Westfall and Young (1993). Adjusted p-values should be given in 
addition to the usual unadjusted p-values. P-value plots are often helpful, Schweder and 
Spjøtvoll (1982). For complex modeling, the use of a hold out sample or cross-
validation can be used to help judge whether the final model is reproducible. As 
Glaeser would predict, this simple and effective strategy is seldom used in the analysis 
of environmental observational studies. Bias is a bit more complicated as unmeasured 
variables can push the results in one direction or another. The standard defense against 
bias has been to require large effects, say a risk ratio over 2.0, Federal Judicial Center, 
(2000), or even over 3 to 4, Temple (1999). Our message is that journal reviewers and 
editors, consumers of scientific information, including regulators, science advisory 
committees, and the press, should be aware of the problem of "researcher initiative" 
and should not rely on papers which do not make systematic efforts to address such 
issues.

Data: The data used in this paper was obtained from Professor Pope and can be 
downloaded from www.niss.org/content/s-stanley-young
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