
R, lattice and RgoogleMaps: A practical framework for the
development of new geovisualizations

Karl Ropkins1*, David C. Carslaw2, Said Munir1,3

Haibo Chen1
1Institute for Transport Studies, University of Leeds, LS2 9JT, UK

2Science Policy Group, Environmental Research Group, King's College London, SE1
9NH, UK

3Umm Al Qura University, Makkah 21955, Saudi Arabia
*Corresponding author (k.ropkins@its.leeds.ac.uk)

Abstract
The R package lattice provides an elegant and highly powerful implementation of the
Trellis plotting structure described by Cleveland and colleagues. Therefore, the
combination of another R package RgoogleMaps and lattice is an obvious starting point
for the development of map based data visualization and analysis tools. While ‘stand
alone’ plot functions developed using this combination are of obvious value, the code
framework, which allows simple-to-use and flexible means of merging Google Maps and
multiple lattice plot panels, is of possibly wider interest because it provides a highly
practical template for the rapid third-party development of novel geovisualization
functions. To support this approach, this paper presents results from on-going work to
integrate lattice and RgoogleMaps. Firstly, the basic lattice style code is used to
demonstrate panel layering and plot development methods, and their use to quickly
generate a wide range of geovisualizations. Then, a ‘higher level’ version of the code, the
GoogleMapsPlot function in the R package openair, is used as an example to illustrate its
incorporation and use in ‘third party’ code.

Key Words: Geovisualization; R; R package lattice; R package openair; R package
RgoogleMap

1. Introduction

In additional to the standard (or base) installation graphics packages, graphics and grid,
there are also a number of higher level graphics packages available for use in R (R
Development Core Team, 2012). lattice (Sarkar, 2008) is one of those packages. It is an
elegant and highly powerful implementation of the Trellis1 plotting structure described
by Cleveland and colleagues (Cleveland, 1993; Becker et al. 1996). Other popular
alternatives include the vcd package developed by Meyer et al (2006) and based on
methods described by Friendly (2000) and Hadley Wickham’s ggplot2 package based on
methods described by Wilkinson (2005). Each of these has different advantages and
disadvantages, and we make no claim that any one of these is the better data visualization
tool. However, lattice has three features which are perhaps worth recognising when
developing data visualization tools in R.

Firstly, lattice uses a formula structure to shape plots. Data is typically presented
in forms such as z ~ x * y | cond, where x and y are the x- and y-axis components, z is

1 The “Trellis” name derives from the appearance of the plots which are often made up of rows
and columns of multilayer panels that are sometimes compared to garden trelliswork.

Section on Statistical Graphics – JSM 2012

2864

any data to be used as a perpendicular z axis component or data surface and cond is any
additional information that can be used to subsample (condition or bank) the x, y and z
data by if multiple-panel plots are required. While this might seem an arbitrary choice, it
means that plots can be very quickly and intuitively rearranged and, perhaps, even more
importantly that the formula used to generate the plot is often also the formula that would
also be used to model any observed plot features in subsequent analyses.

Secondly, the lattice Trellis structure is particularly well suited to the
visualization and interpretation of multidimensional datasets because additional data can
be easily incorporated by expansion of the formula argument in the call. The most
commonly coded/used example is expansion by multiple conditioning (z ~ x * y | cond1
+ cond2 …), but other options are also possible for some lattice plot functions (e.g. z1 +
z2 … ~ x * y | cond, z ~ x1 +x2 … * y | cond, z ~ x * y1 + y2 … | cond, etc ; Figure 1).

Figure 1: Example expansions of a lattice (Trellis) plot. Starting from the general
formula z ~ x * y and z = y = x = 1:10 with z linked to the plot symbol size argument cex,
then applying: (A) Conditioning using the term x is odd/even (z ~ x * y | cond); (B)
Multiple conditioning using the terms x is odd/even and x <=/> 5 (z ~ x * y | cond1 +
cond2); (C) Conditioning using the term x is odd/even and y grouping, y1 = y; y2 = y +
2; (z ~ y1 + y2 * x | cond).

Figure 2: Example plot build using panels using West Yorkshire crime data for June
2011 (source: http://policeapi2.rkh.co.uk): (Left) all data scatter-plotted with
panel.xyplot; (Middle) kernel density estimation for all data with panel.kernelDensity;
(Right) vehicle crime subset scatter-plotted over the all data kernel density.

Section on Statistical Graphics – JSM 2012

2865

http://policeapi2.rkh.co.uk/

Finally, lattice includes a large number of panel functions which are used to
generate different plots. A number of the panels are dedicated functions, e.g. the
panel.xyplot function which is used to generate that standard xy scatter plot panel content
associated with the lattice function xyplot. However, others generate more generic panel
elements, e.g. lines, arrows, polygons and text, and any of these can be layered to
generate novel plot outputs (as in Figure 2). This makes lattice a particularly useful
‘blocking block’ when developing novel data visualizations.

Markus Loecher’s RgoogleMaps package (Loecher & Sense Networks, 2011) is a
highly convenient interface for R and the Google Static Maps server
(https://developers.google.com/maps/documentation/staticmaps/). It handles multiple
tasks: it allows users to generate Google Map server queries; recovers and imports
standard Google Maps outputs into R; and, provides proper coordinate scaling for the
routine use of these as backgrounds images for overlay plots. Therefore, the combination
of lattice and RgoogleMaps would appear to an obvious starting point for the
development of map based data visualization and analysis tools.

Geovisualization is a particularly powerful class of data visualisation. The
combination of statistical graphics and geographical reference is something that holds a
strong fascination for many of us, and works on multiple (emotive, intuitive and
informative) levels. See e.g. related discussion in Butler (2006), de Adana et al (2009) or
Batty et al (2010). Even relatively simple geovisualizations can be highly effective ‘scene
setters’. However, a wide range of coloration and glyph strategies have been extensively
used in both traditional cartographic and more recent computer-based geovisualizations
to further enhance the visualisation for more complex multivariate datasets, e.g. c.f. Kraaf
& Ormeling (1996) and Dykes et al (2006).

2. Software

When making any new software, developers face a number of design questions. Often the
tendency is to favour highly structured functions that enforce their own ideas of how data
should be handled and visualised. This type of approach generates ‘stand alone’ functions
which are perhaps best suited to and preferred by non-expert audiences. However, many
users are typically experts in one or more area associated with the visualization process,
e.g. the spatial handling of data, the data types or sources, or visualisation options, and
for these users such rigid approaches can often actually hinder efforts to best represent
their data. Here, what users typically require is more direct access to the underlying code
that controls the different aspects of the main plot functions. Furthermore, many of the
coding steps associated with visualisation are relatively generic and therefore
transferrable, e.g. the latitude and longitude handling when locally scaling data is
basically the same regardless of any subsequent data handling. Therefore, an approach
analogous to the panel… approach adopted in the lattice package could provide a highly
effective framework for the rapid development of novel geovisualization functions. To
support this approach, this paper presents results from on-going work to integrate lattice
and RgoogleMaps, both as a direct geovisualization tool and an aid for third parties
wishing to develop novel geovisualisations of their own. In keeping with the spirit of R
and open software development practices, associated geovisualization code and the
extension of this approach to other (non-geo) data visualizations are provided in the loa
package (Ropkins, 2012).

 R source: http://www.R-project.org
 loa source: https://sites.google.com/site/karlropkins/rpackages/loa/

Section on Statistical Graphics – JSM 2012

2866

https://developers.google.com/maps/documentation/staticmaps/
http://www.r-project.org/
https://sites.google.com/site/karlropkins/rpackages/loa/

3. The loa Function GoogleMap

GoogleMap, the main geovisualization function in loa, takes the default form:

 GoogleMap(x, data = NULL, map = NULL,

map.panel = panel.GoogleMapsRaster,
panel = panel.xyplot, recolor.map = FALSE, …)

x is a formula of the general form z ~ latitude * longitude | cond, with required

elements latitude and longitude (WGS-84 ellipsoid) and optional elements z and cond.
The default source for x elements is the R workspace unless an alternative is supplied as
data as a specific source. The map layer of the visualisation is obtained using the loa
function makeMapArg unless an alternative is supplied as map. makeMapArg uses other
call arguments (e.g. data latitude and longitude ranges and xlim and ylim ranges) to set
required maps dimensions and returns a slightly modified form of the Google Maps static
map output2 generated by the RgoogleMaps function GetMap3. map.panel and panel are
the functions used to generate the map and data layers of the geovisualization,
respectively. recolor.map is an additional argument that allows users to further modify
the appearance of the map layer. All other supplied arguments are passed on to other
functions, some with minor local modification. This mechanism provides access to a
wide range of common plot arguments, e.g. col, pch and cex to control the color, type and
size of symbols plotted using panel. A trivial example (output shown as Figure 3) of the
loa GoogleMap function usage is:

latitude <- c(32.893426, 32.770893, 32.799973, 32.731624),
longitude <- c(-117.250214, -117.251501, -117.256393, -117.146015),
area <- c("Torrey Pines", "Mission Beach", "Mission Beach", "Town")
GoogleMap(~ latitude * longitude | area, col = "blue")

Figure 3: loa GoogleMap plot generated using above trivial example. Google Map data
subject to copyright © 2012 Google/GeoBais-DE/BKG/Tele Atlas.

2 The Google Map API returns the smallest panel it can generate that contains the supplied
latitude/longitude range. So, the returned map range may not be exactly the requested map range.
3 The loa function getMapArg allows users to recover the map component from previous
GoogleMap plots. Google limits free access to the Google Maps API to one thousand requests per
day. So, this is a useful option for, e.g., animations or multiple ‘same map’ plots.

Section on Statistical Graphics – JSM 2012

2867

4. The Basic Plot Structure quickMap

The plot code can be accessed using the R function edit both in its full form in
GoogleMap and in simplified form in the trivial function quickMap also supplied as part
of the loa package. Latitudes and longitudes are transformed to a local scale by
RgoogleMaps function LatLon2XY.centered in order to provide the conventional
cartographic 2-dimensional projection of the Earth’s (3-dimensional) curved surface.
Therefore, in addition to makeMapArg and panel.googleMapsRaster both plot functions
also make use of several axis management functions. The main function amongst these is
axis.components.googleMaps, a convenient wrapper for x (longitude) and y (latitude)
axis handlers that in turn align supplied (latitude/longitude) and local (x/y) scales using
LatLon2XY.centered and its inverse form XY2LatLon. Similarly, any additional data
placed on the map (or map rescaling, e.g. using the lattice arguments xlim and ylim
arguments) needs to be locally scaled before plotting, again using LatLon2XY.centered.

5. Routine lattice Plot Handlers

If a code author develops move than one plot function using a package, it is highly likely
that these functions will share a number of common elements, e.g. plot naming and
argument handling methods. This is an obvious convenience for the plot users who can
much more intuitively work with multiple plots that share common elements. However, it
is also a convenience for the author who can reuse the transferable subroutines within
their code, and, by extension, for third-party plot developers if those subroutines are
packaged as workhorse functions.

Therefore, a number of common plot element handlers are included in the loa
package as documented functions. Perhaps the most amenable of these are the
workhorses written for the visible elements of plots, e.g. colHandler and cexHandler
functions for the management of plot point color and size, and localScaleHandler for
generation of alternative plot axes. However, there are also a number of workhorses for
the routine handling of some of the less obvious generic structure within lattice, most
notably panelPal. lattice makes extensive use of subscripts to appropriately handle
different data series in conditioned multiple panel plots. panelPal is a wrapper for the
panel argument of a lattice plot function which routinely manages some aspects of
subscripting, as well as providing an alternative mechanism for handling data grouping
within lattice plots.

6. The Data Layer map.panel

By default, the map layer of loa GoogleMap plots is a Google Map API output4 imported
into R using the RgoogleMaps GetMap function and modified for use with lattice plots.
Map layers can very easily dominate geovisualizations, especially if they are overly
colourful or text-dense. In order to balance the appearance of map and data layers it is

4 The GoogleMap function was developed specifically for lattice (Trellis-style) Google Map
geovisualizations. However, one of the longer term intentions is extend the range of map layers
available by, e.g., developing sister functions using other map sources, e.g. the Natural Earth
spatial polygons (http://www.naturalearthdata.com/downloads). The intention here is to build
similar plot structure about different makeMapArg and panel…Map functions to provide an
intuitive and readily interchangeable range of geovisualization tools.

Section on Statistical Graphics – JSM 2012

2868

http://www.naturalearthdata.com/downloads

Figure 4: loa GoogleMap map layers generated using R calls in the form GoogleMap(...,
maptype = "[option]") and options roadmap, satellite, terrain and hybrid. Google Map
data subject to copyright © 2012 Google/Terrametrics/GeoBais-DE/BKG/Tele Atlas.

Figure 5: loa GoogleMap map layers (map.panel) generated using R calls in the form
GoogleMap(..., maptype = "roadmap", recolor.map = [option], path = [option]) and
different recolor.map and path settings. All plots are reworkings of the top left panel in
Figure 4. Note in particular that the use of element control via path allows the user to
remove map text from the (Google) map layer. Google Map data subject to copyright ©
2012 Google/GeoBais-DE/BKG/Tele Atlas.

Section on Statistical Graphics – JSM 2012

2869

therefore very important that users have fine control of both. So, GoogleMap allows
further map appearance modification via two mechanisms. Firstly, it allows the direct
access to GetMap arguments such as maptype and path. maptype sets the type of map
construct requested from the Google Map API, using options including “satellite”,
“terrain”, “hybrid”, and “mobile” (Figure 4). path allows users to side-step both loa and
RgoogleMaps and add text to the Google Maps API call directly. This provides access to
further map modifiers, including options to reset map element colors individually, as
described in https://developers.google.com/maps/documentation/staticmaps/. Secondly,
the loa function itself GoogleMap includes an additional argument, recolor.map, which
allows users to redefine maps color scales as part of the import step (Figure 5).

7. The Data Layer panel

By default the GoogleMap data layer is the standard lattice scatter plot data
handler panel.xyplot. Also by default, plot point size and color are linked to the z element
of the plot call, although both options can be reset using the common R data point size
and color arguments, cex and col. Other aspects of the default plot appearance can also be
managed using common R arguments, e.g. xlab, ylab and main for adding x- and y-axis
and title captions, making the routine use of the default form of GoogleMap function
highly intuitive for anyone already familiar with R graphical outputs. However, more
importantly other panel… functions can be supplied as part of the plot call using the
argument panel to generate alternative data layer visualizations. Furthermore, these can
be existing panel functions, e.g. those in lattice or dependent packages, novel functions
written by the plot developer themselves or built-up using combinations of panels and
code. This means even users with relatively limited experience of code development can
very quickly start putting together unique data visualisations. To illustrate this four very
different geovisualizations are presented in Figures 6 to 9.

Figure 6: loa GoogleMap bubble plot visualization of vehicle CO2 emissions. Mobile
data was collected at 1-second resolution using a standard (EURO II petrol) passenger car
and a Horiba OBS-1300 PEMS/GPS, and emissions reported in grams. Google Map data
subject to copyright © 2012 Google/Terrametrics/GeoBais-DE/BKG/Tele Atlas.

Section on Statistical Graphics – JSM 2012

2870

https://developers.google.com/maps/documentation/staticmaps/

Figure 6 uses mobile data collected using a passenger car fitted with a Portable Emission
Measurement System (PEMS) and Global Positioning System (GPS). The figure
visualizes vehicle exhaust CO2 emissions in the form emissions ~ latitude * longitude
over a satellite image map layer (maptype = "satellite").

By default the loa GoogleMap function used plot handlers (colHandlers and
cexHandler) to color-code and size plotted points/symbols according to value of the z
term in the plot formula. But either color or size can be fixed or forced to an alternative
scale using the col and cex call arguments, respectively. Therefore, in this, its’ simplest
form, GoogleMap generates an output analogous to the bubble plots geovisualizations
widely used elsewhere, e.g. in Bivand et al (2008), Gesmann & de Castillo (2011), South
(2011), Kilibarda & Bajat (2012) and SAS (2012). Here, the visualization illustrates some
very important points associated with vehicle emissions: Emissions are not uniformly
distributed over a vehicle journey, and, more importantly some of the very highest
contributions are associated with quite discrete events, e.g. turns at junctions and
stop/starts at signals. Both data conditioning, e.g. by speed or acceleration rate, and map
analysis, e.g. using Google Maps, traffic network shape files or Streetview images, can
then be used to extend to analysis and discussion of findings.

Figure 7 uses West Yorkshire Police crime records, including logged event locations and
crime types, from July 2011 (source: http://policeapi2.rkh.co.uk). Data is visualized in the
form ~ latitude * longitude | crime.type but uses a kernel density estimator data panel,
panel.kernelDensity, in place of the standard scatter plot data handler, panel.xyplot. Both
the map and data layers are user-recolored.

Figure 7: loa GoogleMap kernel density visualization of crime levels in West Yorkshire.
The plot is generated in the form ~ latitude * longitude | crime.type and uses dedicated
panel function, panel.kernelDensity. The crime data (also shown in Figure 2) is from
http://policeapi2.rkh.co.uk. Google Map data subject to copyright © 2012
Google/GeoBais-DE/BKG/Tele Atlas.

Section on Statistical Graphics – JSM 2012

2871

http://policeapi2.rkh.co.uk/
http://policeapi2.rkh.co.uk/

Here, the visualization illustrates several important points associated with crime:
Most notably, many of the types of crimes that we fear the most, e.g. violent crime and
burglary, are relatively uncommon while the vast majority of crimes are linked with
anti-social behaviour and other (minor unclassified) criminal activity. But also there are
very clearly high and low crime areas and for the most part the distributions of crimes are
quite similar regardless of the nature of the crimes. Furthermore, in a statistical
environment like R, the crime densities these plots generate can also be easily weighted
to study the influence of factors such as local population size and income or
geographically modelled to uncover hidden information, that can help us to identify the
areas where less typical criminal activity patterns predominate. However, the panel does
not have to be a density estimator. It can be any form of data handler, e.g. any data
binning, cluster analysis or feature extraction routine, and incorporate latitude, longitude
and any amount of z information. The panel function can be supplied by a third-party (or
taken from available open source archives), developed around available code or
developed entirely by the user, or built up of multiple panels, allowing the user a high
level of fine control, e.g.:

 GoogleMap(…, panel = [my.panel.function])
 GoogleMap(…, panel = function(…, arg) [my.panel.function](…, arg))
 GoogleMap(…, panel = function(x, …){
 x2 <- [my.modification.of.x]

 [my.first.panel.function(x = x2)]
 [my.second.panel.function(x = x, …)}) #etc.

The use of this type of layered panel function is illustrated by Figure 8, which combines
hex-binning and arrow layers to visualize UK wind farm data (source: www.bwea.com).

Figure 8: loa GoogleMap hex-bin and arrow data layer visualization of UK wind farm
performance. The base plot is generated in the form Annual Household Equivalents ~
Latitude * Longitude. Annual Household Equivalents, a wind farm electrical power
production metric, is binned and summed using a modified form of the hexbin function
panel.hexbinplot. Additional data (wind direction, average speed and variability) is
supplied separately and handled by an in-development arrows panel. Wind farm data is
from www.bwea.com. Google Map data subject to copyright © 2012 Google/GeoBais-
DE/BKG/Tele Atlas.

Section on Statistical Graphics – JSM 2012

2872

http://www.bwea.com/
http://www.bwea.com/

The hex-bin layer is generated with a modified version of the lattice hexbin
panel, panel.hexbinplot (from the R package hexbin; Carr et al, 2011), and shows the sum
of Annual Household Equivalents, an electrical power production potential metric, for all
wind turbines in each hex-binned region. The arrows layer is an in-development variation
of panel.arrows intended for the visualization of data fields like air and water flow that
can have multiple forms of associated information (direction, speed, speed variability,
species loading, temperature, etc.). Here, the hexbins show the relative electricity
production potential of a given area, and the arrow directions and sizes indicate the local
wind direction and average speed. Obviously, areas with higher wind speeds and larger
electricity production potentials, indicated by a big arrow in/near a dark hexbin, would be
expected to produce more electricity. So, this type of approach can be used as benchmark
or normalization step when comparing the performance of different wind farms.
However, it can also be used to highlight issues. For example, here relatively stable and
more variable wind speeds are indicated by blue and red arrows, respectively. Wind
farms cannot be safely operated in very variable wind conditions, so high but variable
speed speeds and associated potential wind farm down-time, indicated by red arrows
in/near dark hexbins, need to be factored into such analyses.

Figure 9 uses Polycyclic Aromatic Hydrocarbon (PAH) data from the UK Department of
the Environment Food and Rural Affairs (DEFRA) Air Quality Archive (source:
http://uk-air.defra.gov.uk/data/pah-data) to demonstrate glyph-style geovisualisation.

Figure 9: loa GoogleMap glyph-based visualization of 2008 UK PAH data. The plot is
generated in the form z0 + z1 + z2 + z3 + z4 + z5 + z6 ~ latitude * longitude. The glyph
itself depicts the concentration of one PAH, benzo[a]pyrene, (supplied as z0) using the
pale blue circle scale, and six source indicator PAH ratios (supplied as z1 to z6) as
superimposed segments. PAH data is from http://uk-air.defra.gov.uk/data/pah-data. The
data layer is generated with a dedicated glyph panel function. The Google Map data is
subject to copyright © 2012 Google.

Section on Statistical Graphics – JSM 2012

2873

http://uk-air.defra.gov.uk/data/pah-data
http://uk-air.defra.gov.uk/data/pah-data

The glyph structure is built up using a similar approach to the previous plot,
except here all glyph inputs are supplied as separate z terms (in this case z0 to z6) and the
glyph is produced using a dedicated panel function that is in turn comprised of a series of
subpanels, each one generating a separate element of the glyph. In this case, the first
(back most) element of each glyph is a pale blue circle, which is scaled according to the
concentration of benzo[a]pyrene (BaP), a PAH of particular concern. This input is
supplied as z0 and provides a measure of the environmental loading of BaP. Elsewhere
(e.g. del Rosario Sienra et al, 2005; Sofowote et al 2010; Dvorská et al, 2011;
Tobiszewski & Namiesnik, 2012), the ratios of certain PAHs have been identified as
potential indicators for different source types5. So, Figure 9 uses superimposed circle
segments, supplied as z1 to z6 and scaled relative to z0, to characterize possible source
contributions for BaP. Ratios 1 to 3, (z1 to z3 shown in yellow to the left of the glyph
centre) are associated with urban sources including road traffic (gasoline/diesel mixes)
and domestic activity, while ratios 4 to 6 (z4 to z6 shown in red to the right of the glyph
centre) are associated with coal, coke and diesel use. Here, none of glyph structures are
completely dominated by a single source indicator ratio, suggesting that BaP is unlikely
to be derived from a discrete source at any of the monitoring locations. This is consistent
with current source inventory estimates and illustrates the complex nature of
environmental PAH loadings. However, what is also apparent from the visualization is
that the locations where BaP concentrations are highest are also the locations with the
highest ratio 4, 5 and 6 contributions, suggesting that coal and coke burning and
diesel-rich emissions may be important contributors to elevated levels of BaP.

A similar approach can also be used to add in static elements to aid visualization
or simplify plot interpretation. lattice includes a number of ‘building block’ panels and
elements (e.g. lpolygon, llines and ltext) that can be easily combined to generate novel
plot components. For example, the glyph key in Figure 9 is generated using the glyph
panel function, a ‘dummy’ set of plot inputs and additional box, line and text elements.

8. Plot Interaction

There are already a number of R packages that have been written specifically to provide
very highly refined levels of plot interaction. These include iplots (Urbanek & Wichtrey,
2011), the ggobi interface rggobi (Cook & Swayne, 2007; Temple Lang et al 2012) and
the Google API interface googleVis (Gesmann & de Castillo, 2011, 2012), amongst
others. loa is not one of these. Rather, it is a plot development package that includes
some limited plot interaction functions intended to simplify plot development and routine
work with the loa and lattice outputs. The main plot-interactive function in loa is getXY.
This is wrapper for the existing lattice/grid function grid.locator that behaves more like
locator, the equivalent function used for recovering coordinate locations from previously
generated plot outputs. So, although by default getXY selections are not automatically
marked, adding common plot parameters to the function call overrides this, e.g. to add
red symbols and lines, and the limit the number of points collected from a plot:

 #after making a lattice or loa plot

ans <- getXY(col = "red", pch = 4, type = "b", n = 4)

5 Here, it should perhaps be emphasized that while these ratios are commonly described as
diagnostics in the literature, they are more sensibly regarded as indicators. The ratios have a
degree of spatial and temporal variability that hinders more rigorous interpretation/source
apportionment; see e.g. comments of Dvorská et al (2011) and Katsoyiannis et al (2012).

Section on Statistical Graphics – JSM 2012

2874

The function also provides a mechanism for handling locally scaled axes like the
latitude/longitude axes of GoogleMap, which is implemented by the getXY wrapper
getLatLon. These functions are intended to be used in three ways: (1) To recover
coordinate information from existing plots; (2) In combination with trellis.focus and
panel… style functions, to manually add items to plots; and, (3) As the ‘front end’ of
functions used to analysis elements of loa outputs like GoogleMap plots. Figure 10
presents a relative simple example of this latter application, the measurement of the
turning angle between arms on a roundabout, coded as part of on-going work for a study
of the relationship between the geometric properties of road features and accident rates.
Associated functions combine getLatLon and existing methods/code (e.g. bearings and
distances using modifications of methods and JavaScript codes posted by Chris Veness
on http://www.movable-type.co.uk/) to allow users to quickly and manually recover such
metrics from GoogleMap outputs that they can also quickly generate using location
coordinates.

Figure 10: Roundabout turning angle measurement using loa GoogleMap, getLatLon and
code based on methods published by Chris Veness at http://www.movable-type.co.uk/).
The Google Map data subject to copyright © 2012 Google/Terrametrics/GeoBais-
DE/BKG/Tele Atlas.

9. Example Third Party Use: openair GoogleMapsPlot

openair (Carslaw & Ropkins, 2012a) is an R package developed for the air quality
community as part of the UK Natural Environment Research Council (NERC)
Knowledge Exchange Programme (http://www.nerc.ac.uk/using/introduction/; NERC
award NE/G001081/1). One of the key issues that had to be addressed within the
associated project was that many openair users would be new to both R and openair, so
potentially subject to a relatively steep learning curve. This is a particular concern for
many potential users in Local Authority Air Quality Departments (one of the main target

Section on Statistical Graphics – JSM 2012

2875

http://www.movable-type.co.uk/
http://www.movable-type.co.uk/
http://www.nerc.ac.uk/using/introduction/

audiences for openair) because many have high workloads and limited time available to
learn to use new tools. With this in mind, the argument structure of openair functions is
highly standardized to make function use more intuitive and all data is supplied and used
in R data frames to simplify data handling, see e.g. related discussion in Carslaw &
Ropkins (2012b) or Ropkins & Carslaw (2012). So, openair functions typically take the
form openair.function(data.frame, [openair arguments]). In addition many of the
common but sometimes frustrating activities associated with plot generation, e.g. figure
labelling, label formatting and information key handling, are routinely handled by
openair. The openair function GoogleMapsPlot was developed using modified forms of
the same workhorse functions in the loa function GoogleMap. The basic structure of
GoogleMapsPlot combines different components of the loa quickMap and GoogleMap
structures and openair functions like quickText, openColours and drawOpenKey that
handle text formatting, plot point colors and color keys, respectively, in openair. The
function therefore provides a convenient example of how code from loa can be used as a
‘building block’ for the development of third-party functions. A typical openair
GoogleMapsPlot output is shown in Figure 10.

Figure 10: openair GoogleMapsPlot presented as an example of the integration of loa
geovisualization functions and openair label, color and key handlers. Here, the data is
supplied in as an R data.frame, ‘by-season’ conditioning is automatically handled by
openair cutData function, accessed via the common openair plot argument type. Ozone
(O3) data is from http://www.erg.kcl.ac.uk/downloads/Policy_Reports/AQdata/. Google
Map data subject to copyright © 2012 Google/GeoBais-DE/BKG/Tele Atlas.

10. Future Work

Like most R packages, loa is a ‘work-in-progress’. Functions will continue to be
developed and refined based on feedback from users. However, loa was envisioned as
both a source of ‘stand alone’ plotting functions employing the lattice Trellis data
handling framework and a tool for third-parties wishing to develop novel plots of their

Section on Statistical Graphics – JSM 2012

2876

http://www.erg.kcl.ac.uk/downloads/Policy_Reports/AQdata/

own. In terms of geovisualization, the current ‘next objectives’ are to further develop the
map.recolor argument handlers to provide more convenient control of the map layer
appearance, add additional makeMapArg type functions to provide access to alternative
map layer data sources such as the Natural Earth spatial polygons
(http://www.naturalearthdata.com/downloads), and to continue to develop data panel
handlers for spatial data in the form ~ latitude * longitude. In terms of general plot
handling, the current ‘next objectives’ are to refine the panelPal function to further
simplify group handling and develop keyHandler functions. These will most likely be
introduced as minor updates. In terms of major developments (and major updates), the
current ‘next objectives’ are to introduce trianglePlot and binPlot functions.

Acknowledgements

The first two authors (KR and DCC) gratefully acknowledge the funding and support of
the UK Natural Environment Research Council (NERC) in association with the
development of openair. The first author (KR) also gratefully acknowledges partial
funding and support from the UK Engineering and Physical Sciences Research Council
(ESPRC) towards the development of interactive functions for the measurement of
geometric roundabout parameters. The authors also gratefully acknowledge the on-going
work of the R Core Team and R community in the development and upkeep of R, and the
always welcome feedback of users.

References

Batty, M., Hudson-Smith, A., Milton, R., Crooks, A. (2010) Map mashups, Web 2.0 and

the GIS revolution. Annals of GIS, 16(1), p.1-13
Becker, R. A., Cleveland, W. S., Shyu, M. J. (1996) The Visual Design and Control of

Trellis Display, Journal of Computational and Graphical Statistics, 5(2), 123–
155.

Bivand, R.S., Pebesma, E.J., Gomez-Rubio, J. (2008) Applied spatial data analysis with
R. The Use-R Series. Springer, NY. ISBN: 978-0-387-78170-9.

Butler, D. (2006) Mashups mix data into global service. Nature, 439, p.6–7.
Carr, D. (ported by Lewin-Koh, N., Maechler, M.) (2011) hexbin: Hexagonal Binning

Routines. R package version 1.26.0.
(http://CRAN.R-project.org/package=hexbin).

Carslaw, D.C., Ropkins, K (2012a) openair: Open-source tools for the analysis of air
pollution data. R package version 0.5-21 (http://www.openair-project.org/).

 Carslaw, D.C., Ropkins, K (2012b) openair - an R package for air quality data analysis.
Environmental Modelling & Software, 27-28, p.52-61.

Cleveland, W.S. (1993) Visualizing Data, Hobart Press, Summit, New Jersey.
Cook, D., Swayne, D.F. (2007) Interactive and Dynamic Graphics for Data Analysis.

Springer.
de Adana, F.S., Fernandez, F.J., Loranca, J.L., Kronberger, R. (2009) Covermap:

Computer tool to calculate the propagation in open areas importing data from
GoogleMaps. Antennas & Propagation Conference. Conference proceedings,
p.229-232.

del Rosario Sienra, M., Rosazza, N. G. Préndez, M. (2005) Polycyclic aromatic
hydrocarbons and their molecular diagnosticratios in urban atmospheric
respirable particulate matter. Atmospheric Research, 75 (4), 267-281.

Section on Statistical Graphics – JSM 2012

2877

http://www.naturalearthdata.com/downloads
http://cran.r-project.org/package=hexbin
http://www.openair-project.org/

Dvorská, A., Lammela, G., Klánová, J. (2011) Use of diagnostic ratios for studying
source apportionment and reactivity of ambient polycyclic aromatic
hydrocarbons over Central Europe. Atmospheric Environment, 45(2), 420-427.

Dykes, J. MacEachren, A., Kraaf, M.-J. (2006) Exploring Geovisualization. Elsevier,
London. ISBN 10: 0-08-044531-4.

Friendly, M. (2000) Visualizing Categorical Data. SAS Institute, Carey, NC. ISBN: 1-
580025-660-0.

Gesmann, M., de Castillo, D. (2011) Using the Google Visualisation API with R. The R
Journal, 3(2):40-44.

Gesmann, M., de Castillo, D. (2012) googleVis: Interface between R and the Google
Visualisation API. (http://code.google.com/p/google-motion-charts-with-r/).

Katsoyiannis, A., Sweetman, A.J., Jones, K.C. (2012) PAH Molecular Diagnostic Ratios
Applied to Atmospheric Sources: A Critical Evaluation Using Two Decades of
Source Inventory and Air Concentration Data from the UK. Environmental
Science and Technology, 45(20), 8897-8906.

Kilibarda, M., Bajat, B. (2012) plotGoogleMaps: The R-based web-mapping tool for
thematic spatial data. Geomatica 66(1), p.37-49.

Kraaf, M.-J., Ormeling, F.L. (1996) Cartography – Visualization of Spatial Data.
Longman, London.

Loecher, M., Sense Networks (2011) RgoogleMaps: Overlays on Google map tiles in R
(http://cran.r-project.org/web/packages/RgoogleMaps/).

Meyer, D., Zeileis, A., Hornik, K. (2006) The Strucplot Framework: Visualizing multi-
way contingency table with vcd. Journal of Statistical Software. 17(3), 1-48.
(http://www.jstatsoft.org/v17/i03).

R Development Core Team (2012) R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-
900051-07-0, (http://www.R-project.org/).

Ropkins, K. (2012) loa: Various plots, options and add-ins for use with the lattice
package. (https://sites.google.com/site/karlropkins/rpackages/loa/).
Ropkins, K., Carslaw, D.C. (2012). openair - Data Analysis Tools for the Air
Quality Community. The R Journal, 4(1), p.20-29. (http://journal.r-
project.org/archive/2012-1/RJournal_2012-1_Ropkins+Carslaw.pdf)

Sarkar, D. (2008) Lattice: Multivariate Data Visualization with R, Springer. ISBN: 978-
0-387-75968-5. (http://lmdvr.r-forge.r-project.org/).

SAS (2012) SAS® Visual Analytics 5.1 User’s Guide. SAS.
Sofowote, U.M., Allan, L.M., McCarry, B.E. (2010) Evaluation of PAH diagnostic ratios

as source apportionment tools for air particulates collected in an urban-industrial
environment. Journal of Environmental Monitoring, 12, 417-424.

South, A. (2011) rworldmap: A New R package for Mapping Global Data. The R Journal
3(1), p.35-43.

Temple Lang, D. Swayne, D.F., Wickham, H., Lawrence, M. (2012) rggobi: Interface
between R and GGobi. (http://www.ggobi.org/rggobi).

Tobiszewski, M., Namiesnik, J. (2012) PAH diagnostic ratios for the identification of
pollution emission sources. Environmental Pollution, 162, 110-119.

Urbanek, S., Wichtrey, T. (2011) iplots: iPlots - interactive graphics for R.
(http://www.iPlots.org/).

Wickham, H. (2009) ggplot2: Elegant graphics for data analysis. Springer, New York.
ISBN: 978-0-387-98140-6. (http://had.co.nz/ggplot2/book).

Wilkinson, L. (2005) The Grammar of Graphics (Second Edition). Springer, New York.
ISBN 978-0-387-24544-7.

Section on Statistical Graphics – JSM 2012

2878

http://code.google.com/p/google-motion-charts-with-r/
http://cran.r-project.org/web/packages/RgoogleMaps/
http://www.jstatsoft.org/v17/i03
http://www.r-project.org/
https://sites.google.com/site/karlropkins/rpackages/loa/
http://journal.r-project.org/archive/2012-1/RJournal_2012-1_Ropkins+Carslaw.pdf
http://journal.r-project.org/archive/2012-1/RJournal_2012-1_Ropkins+Carslaw.pdf
http://lmdvr.r-forge.r-project.org/
http://www.ggobi.org/rggobi
http://www.iplots.org/
http://had.co.nz/ggplot2/book

