
Estimating Traffic for Millions of Queries in Real Time

Oliver Dain∗, Tim Hesterberg†, Yogita Mehta‡, Laramie Leavitt§

Abstract
Google estimates traffic for millions of queries continuously. This is used for many applications,

such as caching results for frequent queries, and looking for spikes. We describe how Google
efficiently processes a wide variety of queries with frequencies ranging from tens to millions of
hits per day, with widely varying activity across time of day and week, and updates these models
continuously as new data is observed.

Key Words: Poisson regression, online algorithm, real-time.

1. Introduction

People search on Google for millions of different queries. Our goal in this work is to
estimate the expected traffic for each unique query string (excluding those with very little
traffic) quickly, using minimal memory and other computational resources. These estimates
have many uses including determining which query results to cache for fast access, which
queries to suggest to users, and for detecting changes in query rates. The latter may be
accomplished by comparing the actual query rates to predicted rates. If the query rate
is unusually high we say it is “spiking”. This may indicate an interesting development,
for example “earthquake Japan” on March 11, 2011. Unexpectedly low query rates may
indicate outages.

Many queries have a regular pattern that includes large daily and weekly rate changes.
We must accurately model the regular patterns for accurate planning and to distinguish
spiking queries from queries whose whose rate is increasing as part of its normal pattern.

Different query strings exhibit very different patterns. For example, Figure 1 shows one
week’s data for three different queries. While each query exhibits strong regular patterns,
the patterns are quite different. The query “mail.yahoo.com.vn” (Yahoo’s mail service in
Vietnam) has two strong daily peaks; for the first the query volume increases by more
than an order of magnitude in less than an hour. This is not unusual. In contrast, “the
bachelorette” has a strong peak once a week, just before the show. The query for “tv guide”
also exhibits two daily peaks, though with a different shape than “mail.yahoo.com.vn”.

There are many papers in the literature about modeling periodic time series data [3,
10, 6, 2]. This application has a number of unusual properties that make applying those
algorithms difficult or impossible. We describe those properties in Section 2.

We describe a new algorithm in Section 3. This is a general purpose incremental Pois-
son regression that can be applied to a wide variety of data. As with standard Poisson
regression the framework is quite flexible and capable of supporting periodic components,
trend terms, indicator variables, and polynomials. However, unlike standard techniques, it
supports incremental updates which makes it particularly well suited for modeling a con-
tinuous stream of time series data.
∗MIT
†Google
‡Google
§Google

Section on Statistical Computing – JSM 2012

2404



Monday Tuesday Wednesday Thursday Friday Saturday Sunday0

0.25

0.5

0.75

1

Monday Tuesday Wednesday Thursday Friday Saturday Sunday0

0.25

0.5

0.75

1

Monday Tuesday Wednesday Thursday Friday Saturday Sunday0

0.25

0.5

0.75

1

Figure 1: One week of data for three three different queries, “mail.yahoo.com.vn”, “the
bachelorette”, and “tv guide” from top to bottom. All data is for the week of June 5, 2011.
Data is bucketed into 15 minute buckets. The y-axis of each plot is scaled so that 1.0
corresponds to the maximum query rate.

The algorithm developed in Section 3 bears some resemblance to Kalman Filters. We
discuss the similarities and differences between our technique and the Kalman Filter in
Section 4.

We discuss results in Section 5, and discuss possible improvements to the algorithms
in Section 6.

2. Data Properties

The raw data for each query consist of times the query occurs; S = [t1, t2, . . .]. In principle
this is an infinite sequence of events, though in practice we only observe the queries up to
the current time T , and cannot store the times of all earlier queries.

Important properties of these data include:

1. This is an online application, to be updated with new data, indefinitely (unless users
stop typing a query string).

2. There are millions of time series, one for each unique query string.

3. Different queries have very different patterns.

4. Many queries exhibit regular, dramatic rate changes of more than an order of magni-
tude in a very short time span, often less than an hour.

5. The vast majority of queries exhibit a pattern that repeats weekly.

6. The periodic pattern for a query can change but it usually changes slowly.

7. When the query pattern changes abruptly it is impossible to tell from the data if the
change is temporary or permanent.

8. In our experience, the number of queries can be modeled by a non-homogeneous
Poisson process, possibly with over-dispersion.

Section on Statistical Computing – JSM 2012

2405



Modeling a changing, infinitely long time series requires an algorithm that can be updated
on-line. There does not appear to be any known algorithm that can maintain accurate
models for the number of queries we work with that is fast enough to keep up with the data
stream on a single CPU. Since the model can be fit for each query’s data independently the
data can be separated by query string and each stream handled separately. It is therefore
possible to route each query to a different machine and thus get inexpensive parallelism
by leveraging a cluster of compute nodes [1]. Since compute jobs might be relocated or
machines might fail in such clusters it is necessary to frequently serialize the models to
permanent storage so that recovery is possible. Thus, it must be possible to store a small
amount of data that fully specifies the model and all the information necessary to update
the model when new data arrives. Similarly, although compute clusters make large scale
computation less expensive, each core still costs money. It is desirable to minimize the
resources required to update models and obtain predictions. These considerations rule out
most nonparametric techniques as these generally require storing a large portion of the
historical data [13].

Given the source of the data is it reasonable to assume that the data is generated by a
non-homogeneous Poisson process [13]. Experimental evidence bears this out though we
find that some queries are better modeled by an over-dispersed Poisson.

For our modeling, we transform the series of times of queries [t1, t2, . . .], where ti is
the time at which the ith instance of the query is observed, into a time series of counts,
[y1, y2, . . . , ] where yi is the number of times the query was observed in bucket (time inter-
val) i, e.g. y1 corresponds to the first bucket, y2 the second, etc. Depending on the query
volume, buckets could be say one second long, one minute, or one hour.

2.1 Desirable Characteristics for Models

One use for the models described here is to detect spikes in queries as quickly as possible.
For example, if the query rate for “bin laden” is suddenly higher than its historical pattern
the search engine can take action like presenting news articles to users. The ability to do
this seconds after an event is valuable. Thus it is desirable for the fitted model to closely
track regular volume shifts so that it is possible to accurately discriminate usual and unusual
rate shifts. This precludes many common modeling techniques that treat recurring events
discretely instead of smoothly. For example, simple ARMA models that have terms for the
hours of the week [2] admit patterns that recur periodically and can thus predict that the
volume on a Monday at noon might differ dramatically from the volume on a Monday at
1:00 pm. However, since this is due to the influence of a single hourly term the model will
predict a large step function at the hour boundary. Fast spike detection would be difficult
with this model. Getting flexible, smooth behavior out of such models requires an enormous
number of terms, which violates our storage constraints and is prone to over-fitting.

Most queries exhibit patterns that repeat weekly and change very little from week to
week. Some queries exhibit monthly or yearly patterns, but the vast majority have a weekly
pattern. Occasionally a query will experience a brief change in pattern, as when a news
story breaks or a crossword puzzle clue relates to the query, but these are generally short
term disruptions (spikes) after which the time series resumes its normal pattern. ARMA,
ARIMA, and common parameterizations of the Kalman Filter [6] use data from the re-
cent past to make predictions about the future and are thus prone to over-fit short-duration
spikes. Instead, a successful model must incorporate knowledge of many cycles of the
pattern so that short duration shifts don’t unduly influence predictions.

Predictions should remain stable in the face of short-term spikes, but query patterns do
shift over time and the model must be able to evolve with the pattern. For example, queries

Section on Statistical Computing – JSM 2012

2406



Figure 2: Periodic basis functions for days of the week, and an example linear combination.
The corresponding weekly pattern is exp(linear combination).

for “android” were rare until Google released the Android operating system. When the
operating system was announced the volume of “android” queries increased dramatically
and the increased interest was sustained. On the other hand queries for “leesburg va” in-
creased dramatically after a magazine article listed it as one of the top five places to live but
within hours the volume returned to normal. Other queries fall in between. For example,
queries for “susan boyle” experienced a huge spike after her appearance on the television
show “Britain’s Got Talent” and interest slowly declined over the next several months. It is
not possible to tell if a query has permanently changed its pattern or is experiencing a brief,
one-time shift just by looking at the time series data. Having observed data that differs from
the historical pattern it is difficult to know what prediction to make though any reasonable
prediction probably lies between the historical values and the observed anomaly.

The number of queries is continually changing over time; new queries become popular,
and some old ones decline. The system must be able to handle such changes. And given
the number of queries Google serves, the system must be computationally efficient.

2.2 Incremental Poisson Regression Properties

Our basic approach is a Poisson regression algorithm that puts more weight on recent ob-
servations. We model daily and weekly patterns using two periodic B-splines, one with
a period of one day and one with a period of one week. Our model is multiplicative so
predictions are the product of the daily and weekly components. The splines allow us to fit
flexible, smooth curves to the data [4] that match most observed weekly patterns reasonably
well. Figure 2 shows seven basis functions, which combine to form the weekly pattern.

Unfortunately it is not possible to simply store several periods of data and periodically
run the regression as the cost of storing the data would be prohibitive. In Section 3 we
describe an incremental Poisson regression algorithm that compactly maintains a represen-
tation of the historical data; this avoids the cost of storing many periods of historical data
while maintaining most of the relevant information in that data. We downweight old data
to achieve a balance between quickly adapting to changes and remaining stable in the face
of short term shifts.

The framework described in Section 3 treats the periodicity as a parameter, so could
model time series with any periodicity. There are techniques for automatically determining
the periodicity of a time series [2]. Such techniques could be used with the framework
presented here but will not be addressed in this paper. Furthermore, while we use this

Section on Statistical Computing – JSM 2012

2407



algorithm with periodic B-splines, it is a general regression algorithm that allows other
models.

Many powerful modeling techniques require data with a Gaussian distribution. Cao [3]
use a variance stabilizing transform on count data to take advantage of Gaussian methods.
Unfortunately, for many queries, the expected rate is extremely low which makes it dif-
ficult to transform the data such that an ordinary least squares approach would produce
satisfactory results [12]. An alternative is to re-bucket the low rate data so as to increase
the Poisson parameter and thus make variance stabilization feasible. There are two dis-
advantages to this approach. First, many queries have highly variable rates so the query
has an extremely low rate for part of its cycle but a much higher rate for the rest of the
cycle. Re-bucketing the data such that counts are sufficiently large when the query rate
is at its minimum would require buckets so large that key variations would be lost during
times when the query rate is higher. Second, we would like to be able to use these models
to detect deviations from expected rates as quickly as possible, and using longer buckets
would slow that detection. In order to avoid these difficulties, we do not transform the data.
Instead we develop an incremental regression technique in Section 3 that is appropriate for
data with a Poisson distribution, possibly over-dispersed.

3. Incremental Poisson Regression

In this section we develop an updating algorithm for Poisson regression. Let [y1, y2, . . .]
represent the number of observed queries within fixed-time buckets, say one second. Nom-
inally we assume that the observations follow a Poisson distribution with rate given by a
function f(t)

yt ∼ Pois (f(t)) . (1)

In practice we only require that the variance of yt is proportional to the expected rate,
f(t), so over-dispersion or under-dispersion presents no problem. Over-dispersion could
occur due to due to social behavior, for example groups of friends issuing the same query;
under-dispersion could occur if there is a relatively small population of “regulars”, people
who issue a particular query frequently but at most once within a time bucket.

We consider f(t) of the form
f(t) = eg(t)

where
g(t) = β0 + β1x1 + β2x2 + . . .+ βpxp,

xi = xi(t) is a function of time, and βi is a coefficient whose value to be determined
by the data (the βi are known as weights in the machine learning literature). We use B-
splines—the x(t) functions are a basis for piece-wise polynomials, periodic over periods
of one day or week. These splines provide the flexibility necessary to accurately model the
variety of patterns observed in the query stream while still providing a compact model that
is inexpensive to store. We normally use 30 basis functions (intercept, 7 − 1 daily terms,
and 24− 1 hourly terms). However, the general framework could incorporate trend terms,
indicator variables, polynomials, and other regression functions in place of splines.

3.1 Incremental Least-Squares Regression

We begin with an incremental least-squares regression model. This material is not new, but
is included here to help understand the incremental Poisson regression models presented
later.

Section on Statistical Computing – JSM 2012

2408



We begin with the simple case that all n data points in the time series are available at
once, with no downweighting for old observations. Let y = [y1, y2, . . . , yn] as the vector
of observed outcomes, and

X =


X1•
X2•

...
Xn•

 =


x11 x12 · · · x1p
x21 x22 · · · x2p

· · ·
xn1 xn2 · · · xnp


be the n × p design matrix. Here Xi• is the ith row of X (we also use X•j to denote the
jth column of X). This can be solved with the standard least squares solution [13]

β̂ =
(
XTX

)−1
XT y. (2)

There are more numerically-accurate alternatives to this equation, though they are not
needed in our application due to the low correlations between columns of X . For later
use, call XTX and XT y the cross-product matrices.

This solution admits a wide variety of regression functions. If xij is the value of the
jth periodic basis spline at time i then the above fits a smoothing spline to the data as
desired [4, 3]. Furthermore, we can introduce weights to this scheme so that older data
points have less influence on the result than more recent observations. If we replace Xi•
with

√
αiXi• and yi with αiyi for some 0 < αi ≤ 1 we can adjust the weight given to

observation i. If α1 ≤ α2 ≤ . . . ≤ αn then less weight is given to older data.
Now consider the case where not all data is available at once; instead we see data

in blocks. The first block, B1 includes data from time t = 1, . . . , T1, B2 includes t =
T1 + 1, . . . , T2, and in general Bk goes from t = Tk + 1, . . . , Tk.

Let yBk
=
[
yTk−1+1, yTk−1+2, . . . , yTk

]
be the observations for block k, and XBk

the corresponding rows of the design matrix. For convenience, define cumulative blocks
Ck to include data from t = 1 to t = Tk, with corresponding observations yCk

=
[y1, y2, . . . , yTk ] and XCk

the corresponding rows of the design matrix.
The estimate for β using Equation (2) after the kth block of data uses the cross-product

matrices to that point: β̂Ck
=
(
XT
Ck
XCk

)−1
XT
Ck
yCk

.
Those cross-product matrices can be calculated as a sum across blocks:

XT
Ck
XC2 = XT

B1
XB1 + . . .+XT

Bk
XBk

= XT
Ck−1

XCk−1
+XT

Bk
XBk

and

XT
Ck
yCk

= XT
B1
yB1 + . . .+XT

Bk
yBk

= XT
Ck−1

yCk−1
+XT

Bk
yBk

.

After the kth block, we need store only the cross-product matrices to that point, which
requires storage O(p2), independent of the number of observations to that point.

Furthermore we can add downweighting to this scheme. We implement a block expo-
nential downweighting of older data. Let

SCk
= αk−1XT

B1
XB1 + αk−2XT

B2
XB2 + . . .+ αXT

Bk
XBk

= αSCk−1
+XT

Bk
XBk

Section on Statistical Computing – JSM 2012

2409



Algorithm 1 Incremental Least-Squares Regression
Initialize SC0 as a p× p matrix of zeroes, and rC0 as a p× 1 matrix of zeroes. Given SCk

,
rCk

, XBk+1
, and yBk+1

, compute β̂Ck+1
, SCk+1

, and rCk+1
:

1. SCk+1
← αSC+k +XT

Bk+1
XBk+1

2. rCk+1
← αrCk

+XT
Bk+1

yBk+1

3. β̂Ck+1
←
(
SCk+1

)−1
rCk+1

and

rCk
= αk−1XT

B1
yB1 + αk−2XT

B2
yB2 + . . .+XT

Bk
yBk

= αrCk−1
+XT

Bk
yBk

.

Then β̂Ck
= S−1Ck

rCk
is an incremental regression update with block exponential down-

weighting of older data. This only requires storing p × p symmetric matrix SCk−1
and the

1× p vector rCk−1
to carry information from all previous blocks. This yields Algorithm 1.

3.2 Poisson Regression

For count data, instead of the least-squares model just described, we use a Poisson model.
Instead of predictions Xβ, which can be negative, we use eXβ . This also makes the model
multiplicative instead of additive. For example, a model with components for the daily
and the weekly effects eXβ = eXdβd+Xwβw = eXdβdeXwβw , where the subscripts d and
w denote the daily and weekly portion of the model respectively. This agrees with our
intuition that such effects are multiplicative rather than additive. For example, Wednesday’s
traffic being double the normal rate (with each minute double the normal rate) seems more
likely to be correct than Wednesday’s traffic being 5,000 more queries than normal (with
an equal increase of 5000/24/60 for each minute of the day).

The Poisson model also assumes that the variance of observations is proportional to
the mean; this allows for larger random fluctuations during high-traffic periods, so that the
model does not try to over-fit high-traffic periods at the expense of low-traffic periods.

One way to fit the model is to maximize the likelihood function, or equivalently the
log-likelihood. Given an estimate β̂, the estimated mean for the ith observation is λ̂i =
exp(Xi•β̂). For n observations y = [y1, y2, . . . , yn], the log likelihood is

L
(
β̂|X, y

)
=

n∑
i=1

yi log(λ̂i)− λ̂i − log(yi!) (3)

=
n∑
i=1

yiXi•β̂ − exp(Xi•β̂)− log(yi!) (4)

We maximize this by taking partial derivatives and using a Newton–Raphson procedure to
find the root of the derivative.

∂L
(
β̂|X, y

)
∂β̂j

=

n∑
i=1

(yi − λ̂i)xij

= XT
•j(y − λ̂)

Section on Statistical Computing – JSM 2012

2410



Algorithm 2 Iteratively Re-weighted Least Squares (IRLS)

Given observed data y, design matrix X , and an initial estimate for β̂, to compute a better
estimate for β̂:

1. Repeat until convergence:

(a) λ̂← eXβ̂

(b) β̂ ← β̂ −H−1(β̂)G(β̂) = β̂ +
(
XT Λ̂X

)−1
XT (y − λ̂)

and
∂2L

(
β̂|X, y

)
∂β̂j∂β̂k

= −
n∑
i=1

xijxikλ̂i.

For notational convenience, let Λ̂ = diag
(
λ̂
)

be the diagonal matrix with Λ̂i,i = λi.
(In practice we do not create this matrix; instead we perform matrix multiplications that
involve Λ̂ using element-wise multiplications with the corresponding values of λ̂.) The
gradient is

G(β̂) = ∇L
(
β̂|X, y

)
= XT (y − λ̂)

and Hessian is
H(β̂) = −XT Λ̂X.

This is invertible if the columns of X are linearly independent (as they are in our applica-
tion). A Newton–Raphson step is

β̂ ← β̂ −H−1(β̂)G(β̂) = β̂ + (XT Λ̂X)−1XT (y − λ̂) (5)

Using Newton–Raphson steps until convergence gives Algorithm 2, the well known Itera-
tively Re-weighted Least Squares (IRLS) solution for Generalized Linear Models [5].

If the columns ofX are linearly independent thenL
(
β̂|X, y

)
is a convex function with

a single maximum, where the gradient is zero. We thus need not worry about converging
to a local minimum [5]. If yi = 0 for some i then the maximum could occur when one or
more of the β̂ are infinite.

It is interesting to look at the behavior of the algorithm in the simple case of a single
observation and single column in the design matrix with x11 = 1; then λ̂ = eβ̂ and β̂ ←
β̂ + (y − eβ̂)/eβ̂ . When β̂ (and λ̂) is too small in one iteration, it is too large in the
next iteration. When too large in one iteration, it smaller but still too large in the next
iteration, and with successive iterations converges downward to λ̂ = y. But if stopped
before convergence, the estimates tend to be too large.

3.3 Incremental Poisson Regression

We begin by describing two unsuccessful attempts, whose failures motivate our current
algorithm. The first attempt does a one-step upgrade, using gradient and Hessian terms
computed using the old value of β. The second attempt iterates, letting parts of the gradient
and Hessian that correspond to new data depend on the current value of β, but with the parts
corresponding to the old data not changing as β changes. Our current algorithm modifies
the second attempt by also letting the part of the gradient that depends on old data change
as β changes.

Section on Statistical Computing – JSM 2012

2411



Algorithm 3 Incremental Poisson Regression, by One-Step Updating

Initialize β̂C1 by iterating Algorithm 2 to convergence for the first block of data, and let
QC1 = XT

C1
ΛC1XC1 and γC1 = 0, Then, for subsequent blocks of data,

1. λBk+1
= e

XT
Bk+1

β̂Ck

2. QCk+1
= αQCk

+XT
Bk+1

ΛBk+1
XBk+1

3. γCk+1
= 0 +XT

Bk+1
(yBk+1

− λBk+1
)

The Q terms correspond to negative Hessian terms and γ terms to gradient terms.

3.3.1 One-Step Updating

Recall that in the incremental least-squares algorithm, the cross-product matrices are sums
across blocks. Similarly, in the IRLS (Newton-Raphson) algorithm for Poisson regression,
the key terms are sums across blocks. Let Q indicate the negative Hessian, then

XT Λ̂X = QCk+1
= QCk

+QBk+1

where

QCk
= XT

Ck
ΛCk

XCk

QBk+1
= XT

Bk+1
ΛBk+1

XBk+1

correspond to old and new data (where λCk
= eXCk

β̂ and λBk+1
= eXBk+1

β̂ depend on a
common β̂ together with the data from their respective blocks). Similarly, the second term,
the gradient, can be decomposed as

XT (y − λ̂) = γCk+1
= γCk

+ γBk+1

where

γCk
= XT

Ck
(yCk

− λCk
)

γBk+1
= XT

Bk+1
(yBk+1

− λBk+1
)

Now suppose that β̂ is equal to the Poisson regression estimate through block Ck, so
that the gradient γCk

= 0. Then a single iteration of IRLS would be β̂ ← β̂ + (QCk
+

QBk+1
)−1γBk+1

. This idea, together with downweighting previous blocks, results in a one-
step updating approach, Algorithm 3.

Unfortunately, this one-step updating algorithm is not accurate in our application. A
different look at the algorithm may illustrate why, and hint at improvements. In somewhat
less formal notation, let γdata(β) = γold(β) + γnew(β) and Qdata(β) = Qold(β) +
Qnew(β) be the gradient and negative Hessian for the data, expressed as a sum across the
old and new data, evaluated at β. The one-step update corresponds to

β̂new = β̂old +
(
αQold(β̂old) +Qnew(β̂old)

)−1 (
0 + γnew(β̂old)

)
where β̂old is the previous estimate and β̂new is the new estimate. Compared to the usual
IRLS algorithm, this (1) fixes β̂old on the right side rather than updating it iteratively, and
(2) assumes that γold(β̂old) = 0, which may not be true after the first update.

Section on Statistical Computing – JSM 2012

2412



3.3.2 Iterative Updating, Changing Terms For New Data But Not Old Data

The next version attempts to get better estimates by iterating until convergence, and letting
the gradient and Hessian terms for the new data depend on the current value of β̂. The
gradient and Hessian terms for the old data are unchanged, because that data is no longer
available. This algorithm starts with β̂new = β̂old, then iterates

β̂new ← β̂new +
(
αQold(β̂old) +Qnew(β̂new)

)−1 (
0 + γnew(β̂new)

)
This is a complete failure. It converges when γnew(β̂new) = 0, so the algorithm effectively
gives zero weight to old observations.

This algorithm implicitly assumes that γold(β̂new) = 0, i.e. that the gradient for the
old data is the same at β̂old and β̂new. This is not reasonable.

3.3.3 Iterative Updating, Changing Terms For New Data And Old Gradient

Our proposed solution is to update the gradient term for old data using the relationship
between the gradient and Hessian—the Hessian is the matrix of partial derivatives of the
gradient. We use the approximation γold(β̂new) ≈ γold(β̂old) + Hold(β̂new − β̂old) ≈
0 +Hold(β̂new − β̂old).

This algorithm starts with β̂new = β̂old, then iterates

β̂new ← β̂new+
(
αQold +Qnew(β̂new)

)−1 (
−αQold(β̂new − β̂old) + γnew(β̂new)

)
More formally, we approximate the gradient as

γCk+1
≈ 0 + γBk+1

+HCk
∆β̂

where ∆β̂ is the change in β̂ from its value at the end of the previous iteration. Thus after
processing the first block of data we can store QC1 = −HC1 . This allows us to process the
second block of data and get an excellent fit as we have the exact derivative for γC1 with
respect to β. Furthermore, combining QC1 with QB2 yields a reasonable approximation to
QC2 . Thus, storing Q̃C2 = αQC1 + QB2 , which is an approximation to the true value of
QC2 (with downweighting) allows the algorithm to proceed iteratively. Note that Q̃C2 is an
approximation using approximate values for λB1 = λC1 because the predictions changed
when the second block of data is processed. However, provided the predictions didn’t
change dramatically, this should give a decent approximation. Furthermore, the errors are
smaller for newer data. And we downweight older data, so errors tend not to compound.
Algorithm 4 describes this procedure in detail.

The algorithm corresponds to Newton-Raphson steps for an objective function that
consists of the log-likelihood for the new data plus a quadratic approximation to the down-
weighted log-likelihood for the old data. We believe that convergence is guaranteed (though
have not proved this). Section 5 presents results on real data that indicate the effectiveness
of this procedure.

4. Kalman Filters

One popular technique for on-line learning of parametric models is the Kalman Filter. The
basic Kalman Filter model is that yt is a linear function of some unobservable state vector,
βt. The state vector is not constant and also evolves with time. Specifically E (βt), the

Section on Statistical Computing – JSM 2012

2413



Algorithm 4 Incremental Poisson Regression, iteratively changing terms for new data and
old gradient based on current estimates for β.

Given β̂Ck
, Q̃Ck

, yBk+1
, and XBk+1

compute Q̃Ck+1
, and β̂Ck+1

1. β̂Ck+1
← β̂Ck

2. Repeat until convergence:

(a) λBk+1
← eXBk+1

β̂Ck+1

(b) QBk+1
← XT

Bk+1
ΛBk+1

XBk+1

(c) Q̃Ck+1
← αQ̃Ck

+QBk+1

(d) ∆β̂ ← β̂Ck+1
− β̂Ck

(e) γCk+1
← XT

Bk+1

(
yBk+1

− λBk+1

)
− αQ̃Ck

∆β̂

(f) β̂Ck+1
← β̂Ck+1

+Q−1Ck+1
γCk+1

The Q terms correspond to negative Hessian terms and γ terms to gradient terms.

expected value of βt, is assumed to be a linear function of the previous state βt−1 plus
some random noise. These assumptions yield the following system of equations:

yt = Xtβt + vt (6)

βt = Gtβt−1 + wt

where vt and wt are both random variables with zero mean. If we further assume that both
vt and wt have a Gaussian distribution, vt ∼ N (0, Vt) and wt ∼ N (0, Wt), the standard
Kalman Filter algorithm described in [6] can then be applied. Assuming an estimate for
βt−1 ∼ N

(
β̂t−1, Pt−1

)
, where Pt−1, is the covariance matrix for βt−1, and a single new

observation, yt, the update is as follows:

1. rt = yt −Xtβt−1

2. St = XtWt−1X
T
t + Vt

3. Qt = GtPt−1G
T
t +Wt

4. Kt = QtX
T
t S
−1
t

5. β̂t = β̂t−1 +Ktrt

6. Pt = (I −KtXt)Pt−1

For the application described here Gt would always be the identity matrix as we have
no a priori knowledge about how β̂ might change over time. As noted in [11] the Kalman
Filter is equivalent to a Bayesian regression where the prior distribution for βt is given by
βt ∼ N (Gtβt−1, Wt) where Wt is the covariance matrix of wt. It is not clear what values
to use for the prior distribution before we have observed any data for a query. One common
choice in such situations is to use an improper prior. [9] show that this choice for the prior
results in an algorithm that produces results identical to standard linear regression. In other
words, if Gt is set to be the identity and n data points are processed sequentially using the
standard Kalman Filter algorithm beginning with an improper prior the resulting estimate
for β is given by β̂ =

(
XTX

)−1
XT y. Thus the Kalman Filter is equivalent to Algorithm 1

without downweighting. In order to place more weight on new data the Kalman Filter
approach can be modified so that Wt is constrained so that its entries never become too

Section on Statistical Computing – JSM 2012

2414



small thus ensuring that the prior distribution for βt maintains enough variability to allow
for continued evolution. This has roughly the same effect as downweighting older data in
Algorithm 1.

Algorithm 1 and the Kalman Filter produce essentially identical results, but we prefer
Algorithm 1. The storage requirements of the Kalman Filter are βt and the covariance ma-
trix of βt, the same as Algorithm 1. If we update β̂ with each new observation the time
complexity of the Kalman filter is dominated by the time to compute Pt which requires
O
(
p3
)

operations per update. This too is the same as Algorithm 1, which is dominated
by the time to compute

(
XTX

)−1. However, The Kalman Filter approach requires many
more matrix multiplications than Algorithm 1 so the constants are worse. More impor-
tantly, it is possible to trade storage for speed with Algorithm 1 by processing the data in
batches, while this is not possible with the Kalman Filter. Specifically, if n observations are
processed in batches of size m, m > p, the time for Algorithm 1 to process a single batch
is dominated by the time to compute XTX which is O

(
mp2

)
though each batch still re-

quires the inversion of the p× p matrix XTX which is O
(
p3
)
. Thus, since there will be n

m
batches, the time to process all n observations is O

(
n
m

(
mp2 + p3

))
= O

(
np2 + n

mp
3
)
.

Since m is a constant and the data stream is infinitely long the total complexity is still
O
(
np3
)
, but as m approaches n the complexity reduces to O

(
np2
)
. Thus increasing m

can significantly reduce the amount of CPU utilized in any fixed period of time. On the
other hand treating yt as a vector of observations in Equation (6) actually slows down the
filter so it is better to process each data point separately. Thus the time to process all n
observation with a Kalman Filter is O

(
np3
)
. In addition to the time savings Algorithm 1

is easier to understand and it requires less code to implement.
Above we argued that Algorithm 1 is preferable to the Kalman Filter approach for

Gaussian data when Gt = I . In our case the data is not Gaussian distributed and, as
argued in Section 2, it is not feasible to transform the data so that it is. There are proposals
for applying the general ideas of a Kalman Filter to non-Gaussian data [7, 8] which, like
Algorithm 3, are approximate and iterative. The comparison between these techniques and
Algorithm 3 is similar to the Gaussian case; Algorithm 3 produces the same results, is
faster, easier to understand, and requires less code to implement.

5. Results

We have been running Algorithm 4 to maintain a model of every web query received by
Google.com as long as the rate of the query exceeds one query per hour in the past twenty
four hours. Queries whose rate fall below one per hour have their model garbage collected
and any new observations of that query start a new model. The deployed model consists of
two periodic splines: one the repeats daily and one that repeats weekly. The daily spline
has twenty four equally spaced knots, one per hour, and the weekly spline has seven equally
spaced knots, one per day. With period splines, the number of basis functions equals the
number of knots, minus one when used with an intercept.

Figure 3 shows the results on the three queries from Figure 1. In Figure 3 each model
was trained on three weeks of data. The data are provided to the model bucketed by minute
with a batch size of five hours. The model was trained with no downweighting (α = 1).
The plot shows the actual data bucketed into fifteen minute buckets. Each data point is the
average of the value for that bucket over the three weeks of data. The model shown is the
final learned model after all three weeks of data have been observed.

In general we get an excellent fit to the complex queries shown in the figure though
there are a few places where the sparse, fixed knots in the model do not provide sufficient
flexibility to match the query. For example, the pattern on Saturday for “mail.yahoo.vn” is

Section on Statistical Computing – JSM 2012

2415



Monday Tuesday Wednesday Thursday Friday Saturday Sunday0

0.25

0.5

0.75

1 observed data
model

Monday Tuesday Wednesday Thursday Friday Saturday Sunday0

0.25

0.5

0.75

1 observed data
model

Monday Tuesday Wednesday Thursday Friday Saturday Sunday0

0.25

0.5

0.75

1

observed data
model

Figure 3: One full cycle for three different queries. From top to bottom the plots corre-
spond to the queries “mail.yahoo.com.vn”, “the bachelorette”, and “tv guide”. Each data
point is the average of three week’s worth of data starting on June 5, 2011. Data is bucketed
into 15 minute buckets. The y-axis of each plot has been scaled so that 1.0 corresponds to
the maximum query rate.

significantly different from the other days. While the weekly part of the spline can correct
for some of this the resulting model predicts too low a value for the third “hump” in the
day. We are considering dynamically adding and removing knots to improve predictions.

As noted above, the model consumes data in five hour batches. The model is able to
learn the entire weekly pattern for the query despite the fact that the training data never
consists of more than five hours of data and the old data is not stored.

Figure 4 shows how the model evolves over time. In each sub-figure the actual data,
bucketed into 15 minute buckets, is plotted in light gray and the solid, thin black line
indicates the prediction. In the top sub-figure the model has only observed the data from
midnight on Monday until noon on Monday (indicated by the dashed vertical line). The
prediction plotted for all time points is the prediction after the model has observed all
data from the left-edge of the plot up to the vertical, dashed line. Not surprisingly the
predictions to the right of the dashed line are terrible; the model has observed no data past
this point. In the second sub-figure of Figure 4 the dashed line has moved to midnight
on Tuesday indicating that the model has now seen data, available only in 5 hour batches,
between midnight on Monday (the left-hand edge of the plot) and midnight on Tuesday.
Since Algorithm 4 accounts for older data, the new information that arrived between noon
on Monday and midnight on Tuesday did not adversely affect the earlier predictions even
though that data was not stored. Similarly, the third sub-figure show the predictions after
data up to the end of the day on Wednesday has been observed. Note that the prediction for
the third sharp peak on Monday has changed slightly with the addition of new data. This is
because the model incorporates a single daily spline (in addition to the weekly spline) that
is shared by all the days of the week so the prediction for Monday is informed, in part, by
the data observed on Tuesday and Wednesday. Appropriately, the prediction is now roughly
the average of what was observed at this time on the three days of observed data.

Algorithm 4 is very efficient. With twenty four knots for the daily component, seven
knots for the weekly component, one constant offset term, and two components removed
to prevent over-specification our model has only p = 30 components. Thus we store only

Section on Statistical Computing – JSM 2012

2416



Monday Tuesday Wednesday Thursday Friday Saturday Sunday0

0.25

0.5

0.75

1

observed data
model

Monday Tuesday Wednesday Thursday Friday Saturday Sunday0

0.25

0.5

0.75

1

observed data
model

Monday Tuesday Wednesday Thursday Friday Saturday Sunday0

0.25

0.5

0.75

1

observed data
model

Figure 4: Shows the model evolving on data starting on June 5, 2011. The model has only
observed data from the left edge of the plot up to the vertical dashed line in each sub-figure.

p(p + 1)/2 + 2p = 515 doubles to maintain all of the historical data. In addition, updates
are performed in five hour batches so we must store up to 5× 60 = 300 integers of data for
the next update.

The algorithm’s CPU requirements are low enough that we are able to maintain models
for many millions of queries using fewer than 100 commodity CPU cores.

6. Discussion

As demonstrated, Algorithm 4 is capable of maintaining accurate predictive models for
millions of unique query strings using relatively inexpensive commodity hardware. Our
experience with the algorithm has been excellent as we have found its predictions to gen-
erally be accurate and the performance adequate.

However, there are several areas in which in could be improved. In the current imple-
mentation the locations of the spline knots are fixed. For most queries this means that we
have more flexibility than necessary which results in wasted storage and CPU. For a very
few queries the knots are not in the right places and the model is not flexible enough to fit
the data as closely as we would like (for example, “mail.yahoo.vn” in Figure 3). We are
considering dynamically determining knot positions for each query string.

Similarly our model assumes a weekly pattern for all queries. While this is accurate
for the vast majority of query strings, some exhibit longer patterns. Here too we may use
dynamic knot positions, to provide accurate models for queries with long periodicity (like
“full moon” or “santa claus”) without significantly increasing CPU or storage requirements.

It may be possible to improve our current algorithm described in Section 3.3.3 by letting
all terms, including the Hessian term for old data, depend on the current estimate for β.
Note that the Hessian includes a term Λ, hence as predictions increase the negative Hessian
also increases. In one simple case this would be easy. Suppose that only the intercept term
in β changes, increasing by a. Then every value of λ increases by a factor of ea, and QCk

would increase by the same factor. If terms other than the intercept change the situation
becomes more complicated. If the Hessian for old data is updated, the derivative estimate
for the old data could be based on an average of the original and updated Hessian terms for
old data.

Section on Statistical Computing – JSM 2012

2417



References

[1] L.A. Barroso, J. Dean, and U. Hölzle. Web search for a planet: The google cluster
architecture. Micro, IEEE, 23(2):22–28, 2003.

[2] George Box, Gwilym M. Jenkins, and Gregory Reinsel. Time Series Analysis, Fore-
casting, and Control. Prentice-Hall, 3rd edition, 1994.

[3] J. Cao, A. Chen, T. Bu, and A. Buvaneswari. Monitoring time-varying network
streams using state-space models. In INFOCOM 2009, IEEE, pages 2721–2725.
IEEE, 2008.

[4] Carl De Boor. A Practical Guide to Splines. Applied mathematical sciences. Springer,
2001.

[5] A.J. Dobson. An Introduction to Generalized Linear Models. Texts in statistical
science. Chapman & Hall/CRC, 2002.

[6] J. Durbin and S. J. Koopman. Time Series Analysis by State Space Methods. Oxford
University Press, 2001.

[7] L. Fahrmeir and S. Wagenpfeil. Penalized likelihood estimation and iterative kalman
smoothing for non-gaussian dynamic regression models. Computational Statistics &
Data Analysis, 24(3):295–320, 1997.

[8] M.A.R. Ferreira and D. Gamerman. Dynamic generalized linear models. In Gen-
eralized Linear Models: a Bayesian Perspective, pages 57–72. Marcel Dekker, New
York, 2000.

[9] S. Jackman. Bayesian Analysis for the Social Sciences. Wiley Series in Probability
and Statistics. Wiley, 2009.

[10] M.E. Kuhl and J.R. Wilson. Least squares estimation of nonhomogeneous poisson
processes. Journal of Statistical Computation and Simulation, 67(1):699–712, 2000.

[11] J. Misra and D. Gries. Finding repeated elements. Science of Computer Programming,
2(2):143–152, 1982.

[12] A. Veevers and MCK Tweedie. Variance-stabilizing transformation of a poisson vari-
ate by a beta function. Applied Statistics, pages 304–308, 1971.

[13] L. Wasserman. All of statistics. Springer New York, 2004.

Section on Statistical Computing – JSM 2012

2418


