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Abstract
Data from complex surveys are being used increasingly to build the same sort of explanatory and

predictive models used in the rest of statistics. Unfortunately the assumptions underlying standard
statistical methods are not even approximately valid for most survey data. The problem of parameter
estimation has been largely solved through the use of weighted estimating equations, and software
for most standard statistical procedures is now available in the major statistical packages. With one
notable exception, a big gap in the output from these packages is an analogue of the likelihood
ratio test and related quantities like AIC. The exception is the Rao-Scott test for loglinear models in
contingency tables. It turns out to be straightforward to extend this test to many other situations, in
particular to Generalized Linear Models. We show that the asymptotic null distribution of a natural
analogue of the likelihood-ratio statistic is a linear combination of chi-squared random variables
whose coefficients are eigenvalues of a matrix product that does not involve the inverse of the
estimated covariance matrix.
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1. Introduction

Traditional sample survey methods were developed primarily for the estimation of descrip-
tive statistics like means, proportions and totals, rather than for analysis. However, the
analysis of survey data has become big business in recent years, driven in particular by
public access to the results of large medical and social surveys such as NHANES in the
US, the British Household Panel Survey in the UK, or HILDA in Australia. To give just
one indication of the extent of the literature, GoogleScholar lists more than 32,000 papers
with “NHANES” and “regression” in the abstract, and almost 2,000 with “NHANES” and
“generalized linear models”. Hundreds of similar (albeit mostly smaller) studies are be-
ing analyzed around the world every year. Fortunately, most of the traditional work on
descriptive statistics can be used directly to develop methods for analysis.

What do the researchers who are analysing data sets like NHANES want from their
analysis? If the data had been collected through a simple random sample, there would be
no problem − they would simply use a standard statistical package to carry out whatever
analysis they thought appropriate to answer the question of interest − fit a (linear, logistic,
Cox) regression model, and so on. There problems with the technical details of the analysis
when the data is collected via a complex survey with varying selection probabilities and
multi-stage sampling. However, the underlying population and what researchers want to
know about it are not changed by the method of data collection. Thus, most researchers
still want to use the same techniques to answer these questions. Moreover, not only do
researchers want to use the same techniques, they want to implement them using programs
that mimic familiar software as closely as possible.

After a lot of work by many people over the last 25 years or so, much of this is now
possible. In particular, we would like to pay tribute to the contributions made by David
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Binder and Gad Nathan, both of whom died very recently. We focus on fitting Generalized
Linear Models (GLMs) in this paper. Our general aim is to summarize what has been done,
to point to gaps where more needs to be done, and to make a start on filling some of those
gaps. In particular, we extend the tests developed by Rao & Scott (1981, 1984) for loglinear
models to arbitrary Generalized Linear Models.

2. Basic set-up

Suppose that we have observations {(yi,xi); i ∈ s} on a response variable, y, and a vector
of possible explanatory variables, x, where s is a sample of n units drawn from a finite
population or cohort of N units using some probability sampling design. Let πi be the
probability of selecting the ith unit with this design , with wi = 1/πi the associated weight
(perhaps calibrated to known population totals to compensate for non-response and frame
errors). Suppose that, after plotting the data and carrying out other preliminary investi-
gations, we decide that we want to fit a parametric model, f(y | x;θ), for the marginal
conditional density of y given x. (Note that plotting survey data is not at all straightfor-
ward but good routines for this are now available - see Chapter 4 in Lumley, 2010, for a
detailed description.)

If the sample was a simple random one, we would probably fit the model by maximum
likelihood and obtain our estimate, θ̂ say, by solving the likelihood equations,

Usrs(θ) =
∑
i∈s

Ui(θ) =
∑
i∈s

∂`i
∂θ

= 0,

where `i = `i(θ) = log{f(yi | xi;θ)}. Under mild regularity conditions, this would be
a consistent estimator of the solution, θpop say, of the population (or census) estimating
equation

Upop(θ) =

N∑
i=1

Ui(θ) =

N∑
i=1

∂`i
∂θ

= 0. (1)

If θpop is a sensible population quantity to be estimating when we have a simple random
sample, then it must be equally sensible when we have a more complex sample from the
same population. The important question is thus “Is θpop a sensible thing to be estimating
in the first place?”

Clearly θpop would be a natural target if we believed that {y1, y2, . . . ,yN} could be
modelled sensibly as a sequence of independent observations with densities f(yi | xi;θ)
for some arbitrary sequence {x1,x2, . . . ,xN}. Most real finite populations will have a
much more complex covariance structure than this. However, as suggested by Binder
(1983), the solution of equation (1) will give a consistent estimator of θ under much more
realistic assumptions (basically provided the finite population is selected from some su-
perpopulation with the right marginal structure in such a way that E{Upop(θ)} = 0 at
θ = θpop, cf using estimating equations with a “working independence model” for longi-
tudinal data as in Liang & Zeger, 1986). If we think of θpop as estimating the regression
parameter in some superpopulation, then we could get a more efficient estimate by using
a more realistic working covariance matrix. However, as shown by Pepe and Anderson
(1994) and Pan, Louis and Connett (2000), there are real dangers when we move away
from a diagonal working covariance structure. For example, we need to model the ex-
pected value of yi given the covariates of units whose response is correlated with yi and to
model it correctly.
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To avoid such complications, it seems sensible to stick with the simple, robust working
independence structure for general purpose software. This is particularly apposite for sur-
veys like NHANES where samples are large and any squared bias term will dominate the
mean squared error.

We still need to think about the role of the finite population parameter θpop. Some
traditional survey statisticians (see Kish & Frankel, 1974, for example) would regard es-
timating such finite population quantities as the ultimate objective of any inference, but it
seems to us that researchers fitting a model almost always intend the results to be used well
beyond the particular finite population from which the sample was drawn.

What do the researchers themselves want? In reality, we suspect that few of them give
much thought to the question. Richard Peto is one of the few who writes explicitly about
it. In Yusuf, Collins, & Peto (1984), he and his co-authors say:
“A key principle underlying the argument that (such studies) can provide medically rele-
vant conclusions involves careful distinction between ‘quantitative’ and ‘qualitative’ inter-
actions. A qualitative interaction is one where true treatment effects in different subgroups
do not even point in the same direction, whereas a quantitative interaction is one whereby
the direction of the treatment effect is similar..... Our expectation is not that all qualitative
interactions are unlikely, but merely that unanticipated qualitative interactions are unlikely
...”

This is closer to a superpopulation approach than the traditional finite population frame-
work, but perhaps a random effects superpopulation model in which the parameters vary
among populations. The difference between estimating a finite population parameter and
a fixed superpopulation parameter vanishes in large populations. This is not true if our
parameter varies over populations. Unfortunately we only have observations from one
possible population so there is no chance of estimating the between-population variance
component in such cases. Hence we are always going to have an under-estimate of the true
mean squared error, no matter how large our population or sample.

3. Some Formalities

Return to the problem of estimating θpop, defined as the solution of (1):

Upop(θ) =
N∑
i=1

Ui(θ) =
N∑
i=1

∂`i
∂θ

= 0.

For any fixed value of θ, the population score, Upop(θ), is just a vector of population
totals. Thus, since estimating population totals is something that traditional survey theory
does well, we can estimate Upop(θ) from our sample.

Setting Û(θ̂) equal to 0, where

Û(θ) =
∑

sample

wiUi =
∑

sample

wi
∂`i
∂θ

(2)

is the Horvitz-Thompson estimator of Upop(θ), then gives us the estimator θ̂ (sometimes
called the pseudo-MLE).

It is well-known that weighting can be very inefficient if the weights vary widely. How-
ever, unweighted estimates are biased unless the weights are uncorrelated with the residuals
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from the fitted model, as would be the case if all the design variables used in forming the
selection probabilities are included as covariates in the regression model. Some authors
have suggested that we could ensure this by including the vector of weights as extra co-
variates. However, this may distort the meaning of the coefficients of importance. Using
weighted estimates seems the most foolproof default setting for a general purpose program,
while including more flexible options for more sophisticated users.

We shall assume the asymptotic setting and regularity conditions of Th 1.3.9 in Fuller
(2009). Then it follows that

V(θ)−
1
2 (θ̂ − θ)

L→ N(0, I)

where V(θ) = I−1Cov{Û}I−1 with I = E
{
Ĵ
}

. Here Ĵ is defined by

Ĵ = Ĵ (θ) = − ∂Û
∂θT

= −
∑

sample

wi
∂2`i

∂θ∂θT
,

the analogue of the observed information matrix.

We can estimate V(θ) by V̂ = Ĵ (θ̂)−1V̂U (θ̂)Ĵ (θ̂)−1 where V̂U (θ) is an estimate of
Cov

{
Û
}

. The form of V̂U (θ) will depend on the framework of inference being adopted.
The default option in survey (and most other packages) is based on the pretence that PSUs
are sampled independently within strata, recognising that this inevitably still gives an un-
derestimate of the true mean squared error when differences among populations are taken
into account. Different possibilities are available as options for people who have different
(clear) ideas about what they want.

Most statistical packages now include procedures for fitting standard statistical models
to survey data using this approach, which was first suggested by Wayne Fuller (Fuller,
1975) for linear regression and David Binder (Binder, 1983) for more general regression
models. All the major packages have survey routines for linear and logistic regression and
for fitting log-linear models to contingency tables. Survey and Stata can handle arbitrary
Generalized Linear Models.

So what more needs to be done?

If we compare svy:glm with glm in Stata or svyglm with glm in the R package
survey, we see that they are very similar, apart from the need to set up a frame containing
all the design information at the beginning of any analysis involving survey data. The main
exceptions are outputs related to likelihoods − likelihood-ratio tests, deviances, AIC, BIC,
etc. We look at analogues of the likelihood-ratio test in the next section.

As a cautionary note, we observe that some programs ( proc surveylogist in
SAS, for example) do have entries labelled “likelihood-ratio”, “AIC”, “BIC”, etc but these
are simply artifacts of converting the equivalent non-survey program and have no valid
statistical meaning.

4. Pseudo Likelihood-Ratio Tests

It is easy to extend the Fuller-Binder approach to test hypotheses about a p-dimensional
subvector, say θ1, of the parameters, or to produce confidence regions for θ1, via the Wald
statistic,

W = (θ̂1 − θ1)T V̂−11 (θ̂1 − θ1),
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which has an asymptotic χ2
p distribution under the assumptions of the previous section.

This has the usual problems associated with the Wald test. For example, the statistic
is not invariant under nonlinear transformations of the parameter, the tests often have poor
small sample behavior, the confidence regions may contain invalid values of the parameter,
etc. There is an additional, potentially more serious, problem with survey data: even in
very large surveys, the degrees of freedom for the estimated covariance matrix are often
very small, depending on the number of primary sampling units rather than the number of
observations. For example, a two-year cycle of the current continuous NHANES survey
has approximately 15 degrees of freedom. The estimated covariance matrix can be singular
or nearly so, if p is large. Even in less extreme cases, the estimate often has high variance
and its inverse tends to be very unstable.

Ideally we would prefer to use a likelihood ratio test which is invariant and usually has
better small sample properties. Although there is no natural likelihood function for survey
data, it is possible to construct a pseudo likelihood that has many of the same properties.

Write θ in the form θ =

(
θ1
θ2

)
and suppose that we are interested in testing the

hypothesis H0 : θ1 = θ10. Let θ̂0 be the solution of Û2(θ0) = 0 , where θ0 =

(
θ10
θ2

)
and

Û2(θ) =
∑

sample

wi
∂`i
∂θ2

. (3)

Then our pseudo likelihood-ratio test statistic is given by

Λ = 2
{̂̀(θ̂)− ̂̀(θ̂0)}

with ̂̀(θ) =
∑

sampwi`i(θ).
The asymptotic distribution of Λ is given in the theorem below. The main steps in the

derivation, which are very similar to those for establishing the asymptotic distribution of
likelihood-ratio statistic in the classical i.i.d. setting, are outlined in the appendix

Theorem:
If the regularity conditions of Th 1.3.9 in Fuller (2009) are satisfied then, under H0 : θ1 =
θ10,

Λ = 2{̂̀(θ̂)− ̂̀(θ̂0)} ∼ p∑
1

λiZ
2
i ,

where Z1, . . . , Zp are independent N(0, 1) random variables and λ1, . . . , λp are the eigen-

values of D =
(
III11 −III12III−122 III21

)
V1 with V1 = ACov

{
θ̂1

}
and

III =

(
III11 III12
III21 III22

)
.

Recall that, if our sample had been a random sample from a superpopulation, then
ACov{θ̂} would be equal to III−1. Using the standard form for the inverse of a partitioned
matrix, it follows that ACov{θ̂1} would be equal to(

III11 −III12III−122 III
−1
21

)−1
= V01, say.
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Thus we can write the matrix D in the form D = V01
−1V1. By analogy with the

simple scalar case, we call D the “design-effect matrix” and the eigenvalues, λ1, . . . , λp,
“generalised design effects”.

In the special case of log-linear models for contingency tables, the results are well-
known (Rao & Scott, 1981, 1984) and already included in most of the major packages.
The results above show that the Rao-Scott results apply almost unchanged to arbitrary
Generalized Linear Models and, more generally, to any model fitted via a census estimating
equation of the form (1).

5. Evaluating percentage points of the null distribution

If we knew the values of λ1, . . . , λp, there are good routines for getting accurate percentage
points of the asymptotic distribution and hence calculate p-values, confidence limits, etc).
The usual approximation in survey statistics is a Satterthwaite approximation that matches
the mean and variance of the distribution to a scaled χ2 distribution. In many large sur-
veys, this gives an adequate approximation as long as we do not venture too far out into
the tails. More accurate approximations can be obtained by numerically integrating the
characteristic function (Davies, 1990) or summing an infinite series of F percentiles (Fare-
brother, 1984). A saddlepoint approximation (Kuonen, 1999), which gives higher accuracy
than the Satterthwaite approximation with easier implementation than the integration and
infinite-series approaches, is also available.

Of course, we do not know the values of λ1, . . . , λp but, since an estimate of V1 =

ACov
{
θ̂1

}
is available routinely, we can obtain estimates of λ1, . . . , λp. Unfortunately,

as we have noted already, estimates of V1, and hence of quantities desived from such esti-
mates, tend to be extremely variable even in very large surveys and we need to take this into
account. Treating Λ/

∑p
1 λ̂i as an F-statistic with ν1 = p/(1+c2), where c is the CV of the

λis, and ν2 = kν1 d.f, where k is the d.f. of the variance estimate, has been shown to work
well in the special case of log-linear models for contingency tables (see Rao & Thomas,
2003) and should work equally well in more general cases. Similar approximations are
straightforward for the saddlepoint and characteristic function approaches, since a linear
combination of F variables can be transformed to a linear combination of χ2, as long as
negative multipliers are allowed. Simulations in Lumley & Scott (2012) suggest that these
work well for designs like NHANES.

6. Conclusion

The development of natural analogues of likelihood ratio tests in this paper applies to ar-
bitrary regression models and, more generally, to tests for any parameter defined through a
census estimating equation of the form in (1). We can also use very similar methods to de-
velop tests for other situations such as partial likelihood ratio tests for proportional hazards
models fitted to survey data. Details can be found in Lumley & Scott (2012).

An important gap still left unfilled is the development of analogues of AIC and BIC for
survey data. Some results for BIC are given in Fabrizi & Lahiri (2004) but much work still
needs to be done.
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APPENDIX

Sketch of proof of Theorem

As in Section 3, we assume that our sequence of sampling designs is such that V(θ)−
1
2 (θ̂−

θ)
L→ N(0, I) and Ĵ (θ) = I(θ) + op(1) as n,N →∞. We need a preliminary result on

the relationship between the full pseudo-MLE θ̂ and the restricted estimator θ̂0.

Lemma

If θ1 = θ10 then θ̂ − θ̂0 = A(θ̂1 − θ10) + op(n
−1/2) with A =

(
Ip

I−122 I21

)
, where Ip

is the p× p identity matrix.
Proof. We first expand Û(θ) = ∂ ̂̀/∂θ about θ0, recalling that Û(θ̂) = 0 and that
−∂Û/∂θT = Ĵ (θ) = I(θ) + op(n):

0 = Û(θ̂) = Û(θ0)− I(θ0)(θ̂ − θ0) + op(n
1/2).

In particular, if U2 = ∂ ̂̀/∂θ2 is the second component of Û , then

U2(θ0) = I22(θ̂2 − θ2) + I21(θ̂1 − θ10) + op(n
1/2)

Similarly, expanding U2(θ̂0) about θ0 and assuming that θ1 = θ10 :

0 = U2(θ̂0) = U2(θ0)− I22(θ̂2 − θ2) + op(n
1/2).

Combining the two expressions for U2(θ0) leads to θ̂2 − θ̂20 = I−122 I21(θ̂1 − θ10) +
op(n

−1/2) when θ1 = θ10. The lemma then follows immediately.

Theorem

If θ1 = θ10, then Λ = −2
[̂̀(θ̂0)− ̂̀(θ̂)

]
∼
∑p

1 λiZ
2
i , whereZ2

1 , . . . , Z
2
p are independent

χ2
1 random variables and λ1, . . . , λp are the eigenvalues of

(
I11 − I12I−122 I21

)
V11

Proof. Expand ̂̀(θ̂0) about θ̂, noting that ∂ ̂̀(θ)/∂θ = 0 at θ = θ̂:

̂̀(θ̂0) = ̂̀(θ̂)− 1

2
(θ̂0 − θ̂)T Ĵ (θ̂)(θ̂0 − θ̂) + op(n||(θ̂0 − θ̂)||2)

Thus, using the results of the lemma,

DW = −2[̂̀(θ̂0)− ̂̀(θ̂)] = (θ̂1 − θ10)TATIA(θ̂1 − θ10) + op(1).

Note that ATIA = I11 − I12I−122 I21. The theorem then follows from standard results
on quadratic forms of asymptotically normal random variables.
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