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Abstract
Sample surveys are widely used to obtain information about totals, means and other parameters of

finite populations. In many applications, the same information are also desired for subpopulations
such as individuals in specific geographic areas and socio-demographic groups. Often, the surveys
are conducted at national or similarly high levels. The random nature of the probability sampling can
result in no sampling units from many sub-populations of interest. Estimating parameters of these
sub-populations with satisfactory precision and evaluating their accuracy pose serious challenges
to statisticians. Lacking sufficient amount of direction information, statisticians resort to suitable
models to pool the information across small areas. Most existing discussions have focused on
estimating small area means under some models corresponding to imaginary scenarios. They are
likely less effective if utilized for estimating small area quantiles. In this paper, we postulate that
the small area population distributions have some linear structure with error distributions satisfying
a density ratio model. That is, the small area error distributions are all tilted distributions from a
common basis. Under this model, we employ empirical likelihood to pool information in samples
across all small areas. The resulting approach not only allows us to estimate small area means, but
also small area quantiles. We give a comprehensive discussion on this method and provide some
preliminary simulation results to illustrate its potential.

Key Words: Empirical best linear unbiased predictors, empirical likelihood, nested error model,
population quantile, survey sampling.

1. Introduction

It has been an honour to present our research at the joint statistical meeting this year in
celebration of the 75th birthday of Professor J.N.K. Rao. Professor Rao is an iconic re-
searcher in Canada and over the world. He has made tremendous impact to the theory and
practice of statistics, particularly in survey sampling. The Rao-Hartley-Cochran method
(Rao, Hatley and Cochran, 1962) for unequal probability sampling plan remains the most
efficient and practical scheme. The Rao-Wu bootstrap (Rao and Wu, 1988) is an indis-
pensable tool in daily operations of Statistics Canada. His pioneer paper on scale-loading
likelihood, Hartley and Rao (1968), precedents the invention of the famous empirical like-
lihood methodology (Owen 1988). His latest book “Small Area Estimation” (Rao, 2003) is
an immediate classic. Reading his papers and listening to his advices have always given us
additional insight and motivations.

This paper contains some preliminary results based on our recent research which fits
well with the contributions of Professor Rao. We aim to develop empirical likelihood based
approaches for small area estimation in this paper. Sample surveys are widely used to ob-
tain information about totals, means and other parameters of finite populations. In many
applications, the same information are also desired for subpopulations such as individu-
als in specific geographic areas or in socio-demographic groups. Estimating finite sub-
population parameters is referred to as small area estimation problem (Rao, 2003). While
the geographic areas may not be small, direct information from individual areas are often in
severe shortage. Often, the surveys are conducted at national or similarly high levels. The
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random nature of the probability sampling can result in no sampling units from many sub-
populations of interest. Estimating parameters of these sub-populations with satisfactory
precision and evaluating their accuracy pose serious challenges to statisticians.

Due to the scarcity of direct information from small areas, reliable estimates are pos-
sible only if some indirection information from rest areas are available and effectively uti-
lized. This leads to a common thread “borrowing strength”. At least conceptually, statis-
ticians seek common characteristics that can be accurately estimated based on population
level samples. Together with other characteristics learned from other sources, an indirect
estimate for the sub-population parameter is obtained. This estimate is then combined “op-
timally” with the direct estimate if available.

Some pioneer work on small area estimation include Fay and Herriot (1979), Prasad
and Rao (1990), Lahiri and Rao (1995). The research in this area has received increas-
ing attention from both public and private sectors (Fay and Herriot,1979; Schaible, 1993;
Kriegler and Berk, 2010). There are increasing number of publications related to this topic
(Pfeffermann, 2002; Jiang and Lahiri, 2006; Ghosh, Maiti and Roy, 2008; Jiang, Nguyen
and Rao, 2010) in recent years.

In this paper, we propose a new model that is suitable not only for mean estimation
but also for quantile estimation of small areas. In the next section, we review a popularly
used model and motivate the new model. In Section 3, we discuss the inference issue based
on the new model. In Section 4, we provide some simulation results. Our preliminary
results indicate that the model together aided with the empirical likelihood leads us to a
promising new approach for small area estimation. We end the paper with a brief summary
and discussion section.

2. Reviewing a commonly used model and introducing a new model

We use the nested-error regression model (NER) by Battese, Harter and Fuller (1988) for
illustration now and for comparison later. Consider the situation where the population is
made of m + 1 small areas and nk sampling units are obtained from the kth area (k =
0, 1, 2, . . . ,m). Under this model, the univariate response value and its vector covariates
on these sampling units are regarded as independent observations and satisfy

ykj = xτkjβ + vk + εkj , (1)

with area-specific random effect vk ∼ N(0, σ2
b ) and random error εkj ∼ N(0, σ2). Under

this model, the vector-valued regression coefficient β remains unchanged across all areas,
namely it is a common characteristic. Therefore, samples from all areas contain its infor-
mation and can be pooled to estimate β. Hence, when the overall sample size

∑
nk is large,

an estimate β̂ with satisfactory precision of β can be easily obtained. Suppose the area to-
tals Xk are known from, say, administrative records. Sensible indirect estimates of the area
total of y would be Ŷk = Xτ

kβ̂. Direct estimate of Yk, if available, can be combined to
catch some information about vk.

In addition to the above model, the model proposed by Fay and Herriot (1979) has
received even more attention. Various estimation strategies are proposed based on these
models. To our best knowledge, most existing methods focus on estimating small area
totals or means. It is curious that the small area median or quantiles are not addressed at
all. We suspect that it is not because the small area median and quantiles are less important
characteristics, but the commonly used models are un-suitable for constructing quantile
estimators. To fill up this gap, we propose a density ratio model as the platform for small
area estimation of quantiles. In spite of some obvious differences, the new model shares
the spirit of Fay and Herriot (1979) and Battese, Harter and Fuller (1988).
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We now use the same notation for response variable and covariates as in (1). Assume
that we have a random sample from the target finite population with nk units from the kth
small area, and there are m+ 1 small areas in the population. We postulate that

ykj = xτkjβk + εkj . (2)

Some specifications of this model are as follows. First, we allow a more flexible linear
relationship with area specific regression coefficient βk but forgo the area specific random
effect in other models. To avoid excessive number of parameters in this model, we seek
a way to link βk to some auxiliary information. There are many potential choices, but we
tentatively populate that

βk = β + aX̄k (3)

for some vector β and scalar a, where X̄k’s are the known area specific means of covariates.
Apparently, when a = 0, the regression part of our model resembles that of (1).

Second, we regard εkj , for each k, as a random sample from some distribution Gk(·).
We do not impose a parametric form, but postulate a density ratio model (DRM, Anderson,
1979) such that for k = 1, 2, . . . ,m,

log{dGk(y)/dG0(y)} = θτkq(y), (4)

for a known vector valued function q(y) and an area specific tilting parameter θk. The
baseline distribution G0(y) is left unspecified. The above model (4) includes Normal,
Gamma and many other distribution families as special cases. Currently, we allow one set
of parameter for each small area which can be excessive. Instilling an appropriate structure
into θk is under investigation but no results are available now.

Equations (2), (3) and (4) together form a platform for our proposed inference on small
area quantiles. The key difference of our new model lies in (4). Consider the extreme case
when the linear coefficients βk = 0 for all k in both (1) and (2). Under model specified
by (1) with β = 0, a sensible quantile estimation for area k will be heavily dependent
on the normality assumption imposed on εkj and the random effect vk. Under (2)-(4)
with βk = 0, quantile estimates are linked to G0 which is nonparametric. A decent non-
parametric estimate of G0, when available, results in decent quantile estimates for all small
areas and this approach is likely robust against some degree of model mis-specifications.

3. Inference under DRM

Let us first consider an artificial situation where the values of all regression coefficients
are known. In this case, we are provided m + 1 independent random samples {εkj},
j = 1, 2, . . . , nk from a DRM. These observations are the basis for inference on Gk. The
inference method comes from literature and it will be part of our method for small area
estimation.

Recently, Qin and Zhang (1997), Qin (1998), Zhang (1997) and others find that the
DRM can be viewed as the commonly-used logistic regression model. Empirical likeli-
hood (EL, Owen, 1988) is found handy for statistical inference under DRM. They find
the resulting maximum empirical likelihood estimators are consistent and asymptotically
normal under mild conditions. Fokianos et al. (2001) develop a new one-way analysis-of-
variance method based on DRM. Zhang (2000) investigates the asymptotical normality of
the EL quantile estimator when m + 1 = 2. The case for general m is not different in
principle but the investigation becomes substantially more technical. Chen and Liu (2012)
succeed at proving that for general m + 1 the EL quantile estimator admits the Bahadur
representation and find that the EL quantile estimators are more efficient than the empirical
quantiles that only use direct information.
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3.1 Empirical likelihood estimate of Gk

Following the idea of Owen (2001), we confine the form of the candidate G0 to G0(y) =∑
k,j pkjI(εkj ≤ y) where I(·) is the indicator function. Under this setting, we have

pkj = dG0(εkj) and
dGk(εkj) = exp{θτkq(εkj)}dG0(εkj).

Then the EL is defined as

Ln(G0, G1, . . . , Gm) =
m∏
k=0

nk∏
j=1

dGk(εkj)

= [
m∏
k=0

nk∏
j=1

pkj ] · exp [
m∑
k=1

nk∑
j=1

{θτkq(εkj)}].

Note that G1, . . . , Gm are fully determined by θτ = (θτ1 , . . . ,θ
τ
m) and G0. We may

hence write the empirical log-likelihood as

`n(θ, G0) =
m∑
k=0

nk∑
j=1

log(pkj) +
m∑
k=1

nk∑
j=1

{θτkq(εkj)}

where the parameter θ and pkj’s satisfy pkj ≥ 0 and that for all r = 0, 1, . . . ,m,

m∑
k=0

nk∑
j=1

pkj exp{θτrq(εkj)} = 1. (5)

We remark here that we have used convention θ0 = 0 for simpler presentation. It is now
a routine to reveal that maximizing `n(θ, G0) with respect to G0 under the constraints (5)
results in fitted probabilities

p̂kj = n−1{1 +
m∑
t=1

νt[exp{θτt q(εkj)} − 1]}−1 (6)

and the profile EL

˜̀
n(θ) = −

m∑
k=0

nk∑
j=1

log{1 +
m∑
t=1

νt[exp{θτt q(εkj)} − 1]}+
m∑
k=1

nk∑
j=1

{θτkq(εkj)} (7)

with (ν1, ν2, ..., νm) being the solution to

m∑
k=0

nk∑
j=1

exp{θτrq(εkj)} − 1
1 +

∑m
t=1 νt[exp{θτt q(εkj)} − 1]

= 0

for r = 1, . . . ,m. The stationary points of ˜̀
n(θ) coincides with those of a dual form of the

empirical log-likelihood function (Kezioua and Leoni-Aubina, 2008)

`n(θ) = −
m∑
k=0

nk∑
j=1

log[ρ0 +
m∑
t=1

ρt exp{θτt q(εkj)}] +
m∑
k=1

nk∑
j=1

θτkq(εkj), (8)

with ρr = nr/n, r = 0, 1, . . . ,m and n =
∑m
k=0 nk.

For the purpose of point estimation, it is simpler to work with `n(θ) which is convex
and free from constraints. Once the values of εkj are provided, it is relatively simple to find
its maximum point, which serves as the maximum EL estimates of θ. They are then used
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to compute the fitted values defined by (6) with νk replaced by ρk. We then subsequently
obtain estimator Ĝk and other parameters of interest via invariance principle.

There is only one issue not addressed in this part of the inference. We do not have
observed values of εkj . However, this difficulty can be easily resolved. A natural solution
is to replace them by residuals obtained from fitting (2). This is the topic of the next
subsection.

3.2 Fitting linear model (2)

Given (ykj , xkj) for k = 0, 1, . . . ,m and j = 1, . . . , nk, we may estimate (β, a) in (3)
through least sum of squares. That is, let

(β̂, â) = arg min
β,a

∑
k,j

{ykj − xτkj(β + aX̄k)}2. (9)

The residuals (k = 0, 1, . . . ,m; k = 1, 2, . . . , nk) are hence given by

ε̂kj = ykj − xτkj(β̂ + âX̄k).

Substitute ε̂kj into the dual likelihood (8), we get the maximum EL estimator θ̂. Subse-
quently, we have

p̂kj = n−1{1 +
m∑
t=1

ρt[exp{θ̂τt q(ε̂kj)} − 1]}−1

and

Ĝr(ε) =
m∑
k=0

nk∑
j=1

p̂kj exp{θ̂τrq(ε̂kj)}I(ε̂kj < ε). (10)

The availability of Ĝk provides a new tool for small area estimation. If the small area
mean ȳk is the parameter of interest, we readily estimate it by

ˆ̄yk = X̄τ
k(β̂ + âX̄k) +

∫
εdĜk(ε). (11)

If the size of X̄k is not available, we may also use X̄k. The small area distribution of y can
be comprehensively estimated as

F̂k(y) = n−1
k

∑
Ĝk(y − xτkj{β̂ + âX̄k}). (12)

We may hence estimate the small area quantiles by those of F̂k(y).
We have yet to provide some results on the large sample properties of the above pro-

posed method. In a related paper, Chen and Liu (2012) study the large sample properties
of Ĝk in the situation where m+ 1 independent random samples are available. Theoretical
properties of F̂k cannot be directly derived from these of Ĝk. We will leave it as a future
topic. In the next section, we provide some simulation results.

4. Simulation study

In this section, we provide a small scale numerical simulation results to investigate the
performance of the proposed estimators (11) and (12) for small area means and quantiles.
For the sake of comparison, our simulation has included representative estimators of small
area means and quantiles designed in the literature under two commonly used models. The

SSC – JSM 2012

5166



chosen estimators for means are the so-called empirical best linear unbiased prediction
(EBLUP). There are no existing small area quantile estimators. Our simulation explored
the performance of two artificial made-at-request estimators based on these two models.
The first model is the nested-error regression model (1) introduced earlier in which the
variances of the error terms are assumed equal over all small areas.

4.1 Some existing small area estimators

Suppose we have nk observations of (yki, xki) from small area k according to model (1).
Let β̃ be the maximum likelihood estimator (MLE) of β and ȳk be the sample mean of y of
sampling units obtained in area k. Assume the small area population mean X̄k of covariate
x is known. We then have two predictions of the small area means from two angles. One
is based on the linear model given by X̄τ

kβ̃ which borrows strength from the samples over
all areas through β̃. The other is the direction predictor, area sample mean ȳk. Under the
model assumption and if the values of σ2

b and σ2 are given, then the best linear combination
of these two predictors is given by

θ̃∗k = X̄τ
kβ̃ +

nkσ
2
b

σ2 + nkσ
2
b

(ȳk − X̄τ
kβ̃), (13)

which is referred to as the best linear unbiased estimator (BLUP). This above scenario,
knowing the values of σ2

b and σ2, is implausible. Instead, it motivates another predictor. Let
σ̃2, σ̃2

b and β̃ be maximum likelihood estimators of σ2, σ2
b and β under NER assumption.

It then leads to the following predictor which is often referred to as EBLUP

θ̃k = X̄τ
kβ̃ +

nkσ̃
2
b

σ̃2 + nkσ̃
2
b

(ȳk − X̄τ
kβ̃). (14)

We remark that the above EBLUP is not exactly linearly unbiased.
Most recently, Jiang and Nguyen (2012) investigate the small area estimation problem

under the heteroscadastic NER (HNER) model. The HNER model assumes the same linear
structure as (1), but postulates area specific variance of εkj , σ2

k and area specific variance
of vk, γσ2

k. Apparently, with unequal error variances over the small areas, the EBLUP (14)
potentially loses its presumed optimality. Let β̆, γ̆ and σ̆2

k be the MLEs of β, γ and σ2
k

under the HNER. Jiang and Nguyen (2012) find the following estimator

θ̆k = X̄τ
kβ̆ +

nkγ̆

1 + nkγ
(ȳk − X̄τ

kβ̆) (15)

is more accurate under their new model assumption.
We have not seen any discussions on the estimation of small area quantiles under these

two models. In the spirit of (12), we can easily give two made-at-request distribution
estimators based on the NER and HNER models. They are given respectively by

F̃k(y) =
1
nk

nk∑
j=1

Φ
( y − xτkj β̃√

σ̃2 + σ̃2
b

)
, (16)

F̆k(y) =
1
nk

nk∑
j=1

Φ
( y − xτkj β̆√

(1 + γ̆)σ̆2
k

)
(17)

where Φ(·) is the cumulative distribution function of the standard normal. The correspond-
ing quantiles of these distributions serve as natural respective small area quantile estimates.

In this simulation, we examine the small area mean and quantile estimations under three
models with the corresponding estimators/predictors. For quantile estimation, we take the
5%, 25%, 50%, 75% and 95% small area quantiles as parameters of interest.
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4.2 Simulation settings

We simulated data from five models with the number of small areas m + 1 = 10. They
do not necessarily conform to any of three models we introduced earlier. The choice is
based on the notion that “all models are wrong”. In each case, we follow the common
practice to make every small area sample size nk = 10 and 20, rather than having them
randomly decided by a higher level sampling plan. For each simulated data set, we compute
estimates/predictions (14), (15) and (11). The function q(y) in (11) is set to (1, y)τ ,
which has the simplest form among all nondegenerate choices. The process is repeated
independently N = 2000 times. Let θ̂(j)

k denote a generic predictor of small area mean ȳk
in the jth repetition. We report the average mean squared error (AMSE) defined as follows:

AMSE = {N(m+ 1)}−1
m∑
k=0

N∑
j=1

(θ̂(j)
k − ȳk)

2.

We also compute the AMSE in the same way for small area quantile estimators.
Next, we specify five models used in this simulation. In these models, the covariates x

and response value y are linked as follows,

ykj = xτkjβ + vk + εkj (A)

ykj = xτkjβ + xτkjX̄k/100 + vk + εkj (B)

ykj = xτkjβ + sin(xτkjxkj) + vk + εkj (C)

ykj = sin(xτkjβ) + sin(xτkjxkj) + vk + εkj (D)

ykj = ln(1 + 4|xτkjβ|) + sin(xτkjxkj) + vk + εkj (E)

Model A is specified the same as the heteroscadastic model given by Jiang and Nguyen
(2012). They put regression coefficient β = (1,−1)τ and covariates xkj equal either (1, 0)τ

or (1, 0)τ . In addition, they considered three variance specifications under this model, (I)
σ = σk = 0.2 for all small areas; (II) half of small areas have σ = σk = 0.2 and the rest
half of them have σ = σk = 0.8; (III) half number of small areas have their σk generated
from uniform distribution U [0.2, 0.3], and the rest σk from U [0.8, 0.9].

Design matrix structure in model (A) does not allow us to fit the full density ratio model
with structure specified by (2) and (3). In the simulation, we choose to use a simplified
density ratio model in which a = 0.

For Models (B)-(E), we use three component covariate xkj with its first component
being one. We generated the other two components of xkj from a gamma distribution
Γ(λk, 1), with shape parameter λk = 2 + sin(ek) and scale parameter 1. We set β =
(0, 1,−1)τ in Model (B) and β = (0, 1, 1)τ in the rest three models. We generated random
effects vk and errors εkj according to the following three settings. (I) Both vk and εkj have
standard normal distribution; (II) The random effect vk is normally distributed with mean
0 and standard variance σk generated from uniform distribution U(0.4, 0.8). The error
term εkj is normal with mean 0 and standard variance ζk generated from U(0.8, 1.4); (III)
The random effect vk has centralized Γ(ξk, 1) distribution with ξk generated from U(1, 2).
The error term εkj has centralized Weibull distribution W (ζk, 1) with shape parameter ζk
generated from U(0.8, 1.4).

Here are considerations behind these models. Model (A) is chosen to match NER and
HNER closely. Under the error distribution specification (I), NER model assumptions are
fully satisfied. Otherwise, HNER model assumptions are practically satisfied. Thus, the
EBLUP based on NER or HNER for estimating small area means are expected to work
well. We hope that the DRM based EL estimator is not far behind.
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Model (B) matches our DRM specification best although the error distributions under
(II) and (III) do not perfectly fit the density ratio model specification. We hope to see
whether the EL estimator will outperform here. Model (C) has some non-linear component
instilled. The last two models loss all linear relationships between the response variable and
covariates. We are curious on how these estimators fetch when their model assumptions are
completely violated.

4.3 Simulation results

The simulation results on average mean square errors of three estimators for small area
mean are presented in Table 1. Column EL corresponds to empirical likelihood estima-
tor based on density ratio model assumptions. Columns NER and HNER correspond to
EBLUP under NER and HNER model assumptions.

Let us first examine the simulation result under Model (A). As expected, the EBLUP
under both NER and HNER outperform the DRM based EL estimator. See the AMSE
values in columns EL, NER and HNER. Under variance structure scenarios II and III, there
are no visible difference in AMSEs in NER and HNER columns. The DRM based EL
estimator remains behind but not by a big margin.

Under models (B), there are still no visible difference in AMSEs in NER and HNER
columns. The DRM based EL estimator has lower AMSEs as expected under scenarios I
and II. The performance comparison is reversed under scenario III. We take the excuse that
the EL estimator is not specifically designed to perform for small area mean. We will see
that it works nicely for small area medians.

Table 1: AMSE of three small area mean estimators.

Scenario I Scenario II Scenario III
nk Model EL NER NERH EL NER NERH EL NER NERH

(A) 0.006 0.003 0.003 0.061 0.038 0.033 0.144 0.112 0.110
(B) 0.159 0.211 0.212 0.126 0.149 0.151 0.247 0.211 0.215

10 (C) 0.173 0.324 0.337 0.145 0.212 0.217 0.240 0.481 0.491
(D) 0.207 0.241 0.246 0.201 0.389 0.395 0.265 1.009 1.035
(E) 0.182 0.842 0.869 0.145 1.294 1.329 0.259 4.298 4.450
(A) 0.006 0.002 0.002 0.049 0.019 0.018 0.110 0.056 0.056
(B) 0.129 0.132 0.133 0.083 0.088 0.088 0.207 0.151 0.152

20 (C) 0.116 0.331 0.338 0.086 0.156 0.157 0.184 0.411 0.414
(D) 0.128 0.145 0.145 0.130 0.366 0.362 0.192 0.848 0.846
(E) 0.125 0.998 1.012 0.086 2.134 2.159 0.202 4.765 4.834

The linear structure is either weakened or totally destroyed in the remaining models. All
three estimators are used under wrong model assumptions. The simulation results suggest
that the DRM based EL small area mean estimator is a clear winner.

When the sample size for each small area increases from 10 to 20, the DRM based EL
estimator has in general a 20%-30% gain in AMSE; while it is surprising that the AMSEs
of the EBLUPs under NER and HNER increase under Model (E), although they decrease
in the rest models.

In conclusion, even though our new method, the DRM based EL approach does not
target small area mean. It has a lot of potential when there is only a weak or no linear
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relationship between the response variable and the covariates.
We now turn to small area quantile estimations. We generated data from the same

models in the same way as for the small area mean estimations. For each data set generated
for small area mean estimation, we computed the quantile estimates defined by (12), (16)
and (17). We subsequently computed the AMSE of five quantiles estimates. The results are
given in Tables 2 and 3 in columns EL, NER and HNER.

With four exceptions (Scenario (II) of Models (A) and (B) at both nk = 10 and 20),
the DRM based EL small area quantile estimator has uniformly and substantially lower
AMSEs than the other two estimators. As the sample size nk increases, the EL small area
quantile estimator benefits most with reduced AMSEs broadly. This is not the case for
two EBLUPs when data are generated from Models (D) and (E). Because the estimators
(16) and (17) based on NER and HNER models are not specifically designed for quantile
estimation, having a superior performance compared to these two estimators is not a solid
evidence for the excellence of EL. However, we notice the variances are often reduced by
a factor of 2 and 3 or even 4 for medians. They at least provide a strong support to the new
approach.

5. Conclusions and discussions

In this paper, we point out that the small area estimation of population quantiles are not
discussed in the literature. We further suggest that the currently used models for small
area estimation are not suitable as platforms for addressing this issue. Motivated by our
recent work on density ratio models, we propose to use them for the purpose of small
area quantile estimation. We develop an empirical likelihood based estimation method and
study its properties through simulation. The outcomes are encouraging although the scale
of our study is limited. There are a lot of issues to be addressed. They include refining the
model structures, more elaborative combination between linear component in the model
assumption, and the density ratio structure in error distributions. We hope to present a
more complete report in the near future.
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Table 2: AMSE of three estimators of the αth small area quantiles with nk = 10.

Scenario I Scenario II Scenario III
Model α EL NER NERH EL NER NERH EL NER NERH

5% 0.015 0.031 0.039 0.527 0.442 0.209 0.473 0.794 0.918
25% 0.008 0.026 0.029 0.148 0.164 0.120 0.197 0.596 0.639

(A) 50% 0.007 0.025 0.025 0.062 0.095 0.095 0.155 0.534 0.534
75% 0.007 0.026 0.025 0.052 0.128 0.119 0.160 0.556 0.565
95% 0.008 0.033 0.034 0.144 0.270 0.213 0.220 0.740 0.832

5% 1.700 1.998 2.959 1.574 1.657 2.612 1.960 2.363 3.437
25% 0.631 1.071 1.297 0.582 0.699 0.904 0.862 1.460 1.775

(B) 50% 0.503 0.946 1.027 0.475 0.605 0.703 0.623 1.267 1.500
75% 0.638 1.124 1.299 0.604 0.727 0.951 0.737 1.477 1.453
95% 1.896 2.260 3.095 1.847 1.863 2.907 2.068 2.362 3.169

5% 0.618 0.881 1.820 0.504 0.655 1.507 1.042 1.702 2.554
25% 0.451 0.715 0.874 0.441 0.591 0.665 0.552 1.223 1.476

(C) 50% 0.512 0.738 0.994 0.501 0.603 0.795 0.598 1.327 1.624
75% 0.834 0.990 1.260 0.783 0.837 1.242 0.889 1.562 1.635
95% 2.796 2.473 3.667 2.680 2.409 3.942 2.841 2.881 4.050

5% 0.330 0.497 3.747 0.268 0.334 3.318 0.741 1.416 4.203
25% 0.219 0.447 1.154 0.218 0.328 0.807 0.355 1.010 1.956

(D) 50% 0.224 0.467 0.489 0.245 0.358 0.352 0.266 1.031 1.083
75% 0.236 0.481 0.960 0.255 0.382 1.213 0.287 1.144 1.078
95% 0.307 0.570 3.776 0.315 0.431 4.989 0.579 1.298 3.562

5% 0.318 0.489 3.250 0.222 0.311 2.899 0.890 1.616 3.455
25% 0.213 0.422 0.867 0.167 0.280 0.561 0.429 1.037 1.711

(E) 50% 0.200 0.404 0.417 0.175 0.266 0.277 0.289 0.977 0.986
75% 0.209 0.420 0.737 0.193 0.275 0.897 0.291 1.112 0.855
95% 0.260 0.463 2.205 0.266 0.296 2.869 0.581 1.191 2.231
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Table 3: AMSE of three estimators of the αth small area quantiles with nk = 10.

Scenario I Scenario II Scenario III
Model α EL NER NERH EL NER NERH EL NER NERH

5% 0.015 0.030 0.035 0.501 0.434 0.188 0.444 0.774 0.830
25% 0.008 0.026 0.027 0.138 0.159 0.109 0.163 0.582 0.597

(A) 50% 0.006 0.024 0.024 0.050 0.091 0.091 0.112 0.522 0.522
75% 0.005 0.025 0.025 0.034 0.124 0.112 0.109 0.545 0.555
95% 0.007 0.032 0.033 0.113 0.304 0.187 0.152 0.728 0.799

5% 1.058 1.452 2.311 0.934 1.039 1.987 1.279 1.859 2.896
25% 0.368 0.840 1.064 0.310 0.462 0.675 0.608 1.215 1.558

(B) 50% 0.287 0.761 0.796 0.249 0.419 0.461 0.407 1.078 1.178
75% 0.352 0.880 0.952 0.305 0.478 0.615 0.437 1.244 1.246
95% 1.074 1.611 2.168 0.994 1.179 2.134 1.249 1.812 2.286

5% 0.463 0.775 1.812 0.330 0.516 1.470 0.957 1.702 2.552
25% 0.260 0.573 0.761 0.249 0.445 0.509 0.391 1.074 1.350

(C) 50% 0.273 0.557 0.662 0.263 0.418 0.510 0.377 1.136 1.229
75% 0.444 0.684 0.861 0.396 0.522 0.745 0.517 1.269 1.325
95% 1.474 1.535 2.560 1.385 1.364 3.084 1.592 2.018 2.940

5% 0.264 0.483 4.236 0.190 0.293 3.673 0.763 1.461 4.511
25% 0.144 0.447 1.231 0.137 0.313 0.827 0.322 1.023 1.992

(D) 50% 0.127 0.474 0.490 0.150 0.348 0.345 0.197 1.041 1.086
75% 0.144 0.482 1.012 0.148 0.365 1.278 0.193 1.145 1.120
95% 0.166 0.558 4.112 0.177 0.382 5.372 0.287 1.291 3.760

5% 0.276 0.476 3.263 0.169 0.286 2.934 0.891 1.662 3.476
25% 0.162 0.411 0.865 0.109 0.262 0.556 0.415 1.028 1.689

(E) 50% 0.133 0.392 0.395 0.102 0.249 0.260 0.239 0.964 0.953
75% 0.130 0.405 0.683 0.107 0.253 0.824 0.217 1.099 0.839
95% 0.141 0.449 2.340 0.140 0.264 3.093 0.285 1.168 2.370
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