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Abstract
Recently, reproducing kernel Hilbert spaces have been introduced to provide a common approach
for studying several nonparametric estimators used for smoothing time series data (Dagum and
Bianconcini, 2008 and 2011). Based on this methodology, Bianconcini and Quenneville (2010)
focused on the properties of the Henderson reproducing kernels when the filters are adapted at
the end of the sample period, and with particular emphasis on the influence of the kernel order
and bandwidth parameter. In this paper, we design a family of trend filters applied for real time
estimation that are optimal in terms of reducing revisions when new observations are added to the
series, and that are characterized by a fast detection of true turning points.

Key Words: End-point trend-cycle estimation, Henderson kernels, revision minimization, turning
point detection.

1. Introduction

Real time trend-cycle estimation is of outmost importance for policy makers at any level
of economic activity because it enables to assess the stage of the business cycle at which
the economy stands. Hence, current trend-cycle estimates subject to frequent and high
revisions are disliked by policy makers, particularly, if the revisions indicate a change of
direction of the cyclical movement.

The majority of the seasonal adjustment software used by government agencies and
statistical bureau estimate the trend-cycle component using moving average techniques.
In particular, the linear smoother developed by Henderson (1916) has a long tradition for
trend-cycle estimation in economic time series. Henderson filters are still employed for
trend estimation in the X-11 cascade filter, and as such are an integral part of the X-12-
ARIMA procedure, the seasonal adjustment method officially adopted in the US, Canada,
United Kingdom, and many other countries. The importance of real time trend-cycle esti-
mation has been stressed in several recent studies that focus on the properties of the asym-
metric Henderson filters applied to the most recent observations (see, among others, Do-
herty, 2001; Quenneville et al., 2003; Dagum and Bianconcini, 2008 and 2011; Bianconcini
and Quenneville, 2010). A problem that is common to all the methodologies is the extent
to which these trend estimates are accurate and precise. At the end of the sample period,
the data are subject to revisions when additional observations are added because of the use
of asymmetric filters, hence these filters have to be optimal in some way.
As a local polynomial estimator, the Henderson asymmetric filters can be derived through
automatic adaptations at the end of the sample period. This implies that the bias and the
variance near the boundaries of the series are of the same order of magnitude as in the inte-
rior (see e.g. Fan and Gijbels, 1996). It turns out that the variance inflation resulting from
the one-sided real time Henderson filter is very high, and that the filter is strongly localized
at the current observation. In order to overcome such limitations, alternative strategies have
been applied in the literature.
The idea embodied in the X11/X12ARIMA seasonal adjustment procedure is to apply the

∗Department of Statistics, University of Bologna, via delle Belle Arti 41, 40126 Bologna, Italy
†Department of Statistics, University of Bologna, via delle Belle Arti 41, 40126 Bologna, Italy

Section on Government Statistics – JSM 2012

1830



symmetric two-sided Henderson filter to the series extended by forecasts (Dagum, 1982).
This strategy is safer, provided that we are capable of producing optimal forecasts from
according to some time series model of the ARIMA class. An intuitive and easily proven
fact is that if the forecasts are optimal in the mean square error sense, then the variance of
the revisions is minimum (Wallis, 1983).
In X11 based seasonal adjustment procedures, the end-point estimates of the trend-cycle
are obtained using asymmetric filters that were developed by Musgrave (1964), specifically
to minimize revisions for a certain class of time series. Doherty (2001) is the most complete
study on how Musgrave surrogates, i.e. the X11 asymmetric trend-cycle moving averages,
are calculated. Quenneville and Ladiray (2000) also studied the dependence of these sur-
rogates on a parameter that is restricted to predetermined values in X11. They found that
the differences in terms of revisions between the Musgrave averages with the estimated
parameter and the Henderson average with forecasts from a simple ARIMA model can be
very small.
Even if Musgrave asymmetric filters are optimal in terms of minimum mean square revision
of the estimates, they are derived following a different optimization criteria with respect to
the symmetric Henderson filter, with the consequence that the asymmetric filters do not
converge monotonically to the symmetric one. At this regard, Dagum and Bianconcini
(2008 and 2011) provided a different characterization of the Henderson weights within the
Reproducing Kernel Hilbert Space (RKHS) methodology. According to this approach, a
continuous kernel representation of the Henderson filter is obtained, and the same kernel
function is used to derive both symmetric and asymmetric weights. The density function
(i.e. a second order kernel) embedded on the linear filter is firstly determined. This is the
starting point for obtaining higher order kernels, which are based on the product of the
density function and its orthonormal polynomials. Bianconcini and Quenneville (2010)
showed that, for each kernel order, the asymmetric filters can be derived coherently with
the corresponding symmetric weights. In the particular case of the currently applied asym-
metric Henderson filters, those obtained by means of the RKHS are shown to have superior
properties from the viewpoint of signal passing, noise suppression, and size of revisions.

The main purpose of this paper is real time estimation of the underlying trend in a time
series by means of asymmetric Henderson weights derived using the RKHS methodology.
In particular, a family of end filters is constructed using a minimum revision criterion. We
analyze the statistical properties of these asymmetric filters in terms of both size of revisions
and time to detect turning points, paying particular attention on the selection of the kernel
function and bandwidth parameter.

The paper is structured as follows. Section 2 discusses the reproducing kernel repre-
sentations of the classical Henderson filter. Section 3 illustrates the properties of boundary
Henderson kernels, obtained by applying the so called cut-and-normalize method. We also
derive a family of optimal boundary Henderson kernels, optimal in the sense of minimizing
the size of revisions in the final estimates, sharing also the property of fast turning point
detection. In particular, we address inferential issues related to the optimal choice of the
kernel function and of the bandwidth parameter. Finally, Section 5 provides an empirical
application.

2. Reproducing Henderson kernels for trend-cycle estimation

Let {yt, t = 1, 2, ..., N} denote the input series, that is assumed to be decomposed into
the sum of a systematic component, called the signal (or nonstationary mean) gt, plus an
erratic component ut, called the noise, such that

yt = gt + ut. (1)
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The noise ut is assumed to be either a white noise, WN(0, σ2
u), or, more generally, to fol-

low a stationary and invertible AutoRegressive Moving Average (ARMA) process.
If {yt, t = 1, 2, ..., N} is seasonally adjusted or without seasonality, the signal gt represents
the trend and cyclical components, usually referred to as trend-cycle for they are estimated
jointly. The trend-cycle can be deterministic or stochastic, and can have a global or a local
representation. It can be represented locally by a polynomial of degree p of a variable j,
which measures the distance between yt and the neighboring observations yt+j . Equiva-
lently, the trend-cycle estimate ĝt is a weighted average applied in a moving manner, such
that

ĝt =
m∑

j=−m

wjyt+j (2)

where wj , j < N , denotes the weights to be applied to the observations yt+j to get the
estimate ĝt for each point in time t = 1, 2, ..., N . Several nonparametric estimators, based
on different sets of weights wj , j = −m, ...m have been developed in the literature.

Henderson’s starting point is the requirement that the filter should reproduce a cubic
polynomial trend without distortion. He proved that three alternative smoothing criteria
give the same formula, as shown explicitly by Kenny and Durbin (1982) and Gray and
Thomson (1996). These criteria are: (1) minimization of the variance of the third differ-
ences of the series smoothed by the application of the moving average (min var(∆3ŷt)); (2)
minimization of the sum of squares of the third differences of the coefficients of the mov-
ing average formula (min

∑m
j=−m(∆3wj)

2); (3) fitting a cubic polynomial by weighted
least squares to the observations yt+j , j = −m, ...,m, where the weights are chosen
as to minimize the sum of squares of their third differences. Representing the latter by
Wj , j = −m, ...,m, where Wj = W−j , the problem is the minimization of

m∑
j=−m

Wj [yt+j − a0 − a1j − a2j
2 − a3j

3]2, (3)

where the solution for the constant term â0 is the smoothed observation ĝt. Henderson
(1916) showed that ĝt is given by

ĝt =
m∑

j=−m

ϕ(j)Wjyt+j , (4)

where ϕ(j) is a cubic polynomial whose coefficients have the property that the linear filter
reproduces the data if they locally follow a cubic. Henderson also proved the converse: if
the coefficients of a cubic-reproducing summation formula {wj , j = −m, ...,m} do not
change their sign more than three times within the filter span, then the formula can be rep-
resented as a local cubic smoother with weights Wj > 0 and a cubic polynomial ϕ(j), such
that ϕ(j)Wj = wj .
Henderson (1916) measured the amount of smoothing of the input series by

∑
(∆3yt)

2

or equivalently by the sum of squares of the third differences of the weight diagram,∑
(∆3wj)

2. The solution is that resulting from the minimization of a cubic polynomial
function by weighted least squares with

Wj ∝ {(m+ 1)2 − j2}{(m+ 2)2 − j2}{(m+ 3)2 − j2} (5)

as the weighting penalty function of criterion (3) above. This optimality result has been
rediscovered several times in modern literature, usually for asymptotic kernel variants. At
this regard, Loader (1999) showed that the Henderson weights represent a finite sample
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variant of a kernel with second order vanishing moments which minimizes the third deriva-
tive of the function given by Muller (1984). In particular, Loader showed that for large
m, the weights of Henderson’s ideal penalty function Wj are approximately m6W (j/m),
where W (j/m) is the triweight density function. He concluded that, for very large m, the
weight diagram is approximately (315/512) ∗W (j/m)(3 − 11(j/m)2) equivalent to the
kernel given by Muller (1984).

Dagum and Bianconcini (2008) provided different kernel characterizations of the Hen-
derson filter following the Reproducing Kernel Hilbert Space (RKHS) methodology.
A RKHS is a Hilbert space characterized by a kernel that reproduces, via an inner prod-
uct, every function of the space or, equivalently, a Hilbert space of real-valued functions
with the property that every point evaluation functional is bounded and linear. Berlinet
and Thomas-Agnan (2003) showed how the space of polynomials of degree at most p is a
RKHS. At this regard, the minimization problem (3) can be rewritten in continuous time as
follows

min
g∈P3

∥y − g∥2P3
=

∫
T
(y(t− s)− g(t− s))2f0(s)ds (6)

where ∥ · ∥2P3
denotes the norm in the space of polynomials of degree at most 3, P3, and f0

is the density corresponding to the weighting function Wj .

Theorem 1. The minimization problem (6) has a unique and explicit solution given by

ĝ(t) =

∫
T
y(t− s)K4(s)ds (7)

where K4 is the fourth (also third for the symmetry of f0) order kernel representation of
the Henderson filter.

The reader is referred to Dagum and Bianconcini (2008) for a detailed proof of Theorem
1. The kernel K4 can be written as products of the reproducing kernel R3(t, .) of the space
P3 and the density function f0, that has finite moments up to order 8. In particular, using
the Christoffel-Darboux formula, for the sequence (Pi)0≤i≤3 of orthonormal polynomials
with respect to the density f0,

K4(t) =
3∑

i=0

Pi(t)Pi(0)f0(t). (8)

The density corresponding to Wj and its orthonormal polynomials have to be determined.
As shown by Dagum and Bianconcini (2008), the former is given by

f0H(t) =
(m+ 1)

k
W ((m+ 1)t), t ∈ [−1, 1] (9)

where k =
∫m+1
−m−1W (j)dj, and j = (m + 1)t. On the other hand, the polynomials

were computed by solving the Hankel system based on the moments of the density f0H
(Brezinski 1980).
The kernel K4 provides the exact continuous representation for the Henderson filters, and,
when m = 6, it results

K4(t) =
45

7199963584

(
−51619 + 156541 t2

) (
−1 + t2

) (
−64 + 49 t2

) (
−81 + 49 t2

)
.

The main drawback of this formulation is that it depends on the length of the filter, and it
needs to be calculated any time that m changes.
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The asymptotic equivalent kernel representation based on the triweight density function
allows to overcome such limitation, but Dagum and Bianconcini (2008) derived an equiv-
alent reproducing kernel representation based on the biweight density function f0B(t) =
15
16(1 − t2)2, t ∈ [−1, 1]. In particular, Bianconcini and Quenneville (2010) showed that
when the filter length is rather short, such as 9, 13 and 23 terms, the biweight density func-
tion is more appropriate to approximate the weight diagram of the Henderson filter. On the
other hand, for longer filters, the triweight density function is a better choice.

3. Optimal real time filters

The derivation of the two-sided symmetric Henderson filter has assumed the availability of
2m+1 observations centered at t. Obviously, for a given finite sequence {yt, t = 1, ..., T},
it is not possible to obtain the estimates of the signal for the (first and) last m time points.
This is a serious limitation since, in real time analysis, we are interested in the most recent
estimates. Several approaches have been followed in the literature to derive the asymmetric
filters associated to the symmetric Henderson average.
As a local polynomial estimator, they have been obtained by fitting a local polynomial to
the available observations yt, t = T −m+ 1, ..., T , that is by minimizing

q∑
j=−m

Wj(yt+j − β0 − β1j − ...− βpj
p)2, q = 0, ...,m− 1,

where Wj denote the weighting function given in eq. (5). The corresponding weights
satisfy the cubic polynomial reproduction constraints as in the interior of the time support,
but the preservation of this unbiasedness property is done at the expenses of increasing the
variance, which is very high, since most of the contribution to the trend estimate comes
from the current observation.

In the X11ARIMA seasonal adjustment procedure, Dagum (1982) proposed to apply
the symmetric two-sided filter to the series extended by m forecasts. This is a safer ap-
proach provided that we are capable of producing optimal forecasts by means of some
parametric or nonparametric model (e.g. by fitting a time series model of the ARIMA
class). An intuitive and easily established fact is that if the forecasts are optimal in the
mean square error sense, then the variance of the revision is minimum (see Wallis, 1983).

A different and wider applied method can be found in Musgrave (1964). This technique
is used in the X-11 to derive the end weights of the trend-cycle averages corresponding to
the Henderson filter. This approach assumes that the last data points of the time series
follow a simple linear trend. Then the asymmetric weights {v−m, ..., vq} are derived to
minimize the expected square revision error

E

 q∑
j=−m

vjyj −
m∑

j=−m

wjyj

2

under the constraint that
∑q

j=−m vj = 1. A complete and detailed review on this method
can be found in Doherty (2001) and Quenneville et al. (2003). In particular, the latter
showed that these filters are equivalent to apply the Henderson symmetric average on the
available m + q + 1 data points with the missing last m − q points replaced by forecasts
obtained as linear combinations of the first available m+ q + 1 data points.

3.1 Boundary kernels

A different derivation of the asymmetric Henderson filters can be provided by taken into
account the reproducing kernel representation of the filter as introduced in the previous

Section on Government Statistics – JSM 2012

1834



Section. The Henderson filter is transformed into a continuous kernel function, and, at
each time point t∗, the estimate ŷt∗ is obtained as a weighted mean of the sample {yt, t =
1, ..., T} with observations close to t∗ receiving the largest weights. The latter are pro-
vided by the kernel function K defined on [−1, 1], and specified only up to an unknown
smoothing parameter b. That is (Nadaraya, 1964; Watson, 1964),

ŷt =

∑T
t=1K

(
t−t∗

b

)
yt∑T

t=1K
(
t−t∗

b

) ∼=
∑m

j=−mK
(
j
b

)
yt+j∑m

j=−mK
(
j
b

) . (10)

The equivalence between the two formulations in eq. (10) derives from the fact that the
bandwidth b is selected to ensure that only 2m + 1 observations surrounding the target
point will receive nonzero weights.
The approach is quite simple, but presents some flaws. Indeed, at the boundary of the pre-
dictor space (t = 1, ...,m, and t = T−m+1, ..., T ), the kernel neighborhood is asymmetric
(j = −m, ..., q; q = 0, ...,m − 1) and the estimates may be biased and show an increased
variance. Therefore, a variety of kernel modifications have been proposed in the literature
to provide approximated and asymptotic adjustments to overcome these drawbacks.
In order to derive the asymmetric weights associated to the symmetric Henderson average,
Dagum and Bianconcini (2008, and 2011) applied the “cut and normalize” method pro-
posed by Gasser and Muller (1979). The latter showed that, for a fixed symmetric filter of
length 2m+1, and corresponding bandwidth b, the effective domain of the kernel function
in the boundaries is [−1, q∗), where q∗ = q/b, instead of [−1, 1] as for any interior point.
For simplicity, only the left boundary effects, i.e. q∗ < 1, will be discussed here. The right
boundary effects proceed in the same manner. Since s = j/b ∈ [−1, q∗), the symmetry of
the kernel is lost, such that

∫ q∗

−1K(s)ds ̸= 1 and
∫ q∗

−1 s
iK(s)ds ̸= 0, i = 1, .., p− 1.

The boundary kernel Kq∗ is obtained by “cutting” the symmetric kernel K to omit that
part of the function lying between q∗ and 1, and by “normalizing” it between -1 and q∗ as
follows

Kq∗(s) =
K(s)∫ q∗

−1K(s)dt
. (11)

Boundary kernels (11) satisfy the following properties (Gasser and Muller, 1979)

1. Moment conditions:
∫ q∗

−1Kq∗(s)ds = 1,
∫ q∗

−1Kq∗(s)s
ids ̸= 0, i = 1, ..., p.

2. Variance condition:
∫ q∗

−1K
2
q∗(s)ds < c, ∀q∗ ∈ [0, 1), that is the asymptotic variance

has to be uniformly bounded.

3. Convergence: the kernels depends continuously on q∗, and

Kq∗
−−−−→
q
∗ → 1K.

Property 3. is particularly appealing when asymmetric kernels are applied for trend-cycle
estimation. In fact, a monotonic convergence to the corresponding symmetric filter should
imply a reduction of the revisions when new observations are added to the series. On the
other hand, Property 1. shows that these kernels are biased estimators of polynomial trend
of degree p at the boundaries. However, since the neighborhood of observations is smaller
than in the interior of the support, this can be allowed in order to reduce the variability of
the estimates as shown by Property 2.

Boundary Henderson kernels can be derived starting from the exact, the biweight and
the triweight third order kernel representations, as provided before. However, the exact
density function depends on the length of the filter, hence we now concentrate on the study
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of the boundary behavior of the biweight and triweight kernels. At this regard, Bianconcini
and Quenneville (2010) showed that their convergence to the corresponding symmetric
kernel (q∗ = 1) is quite fast (in general after the previous to the last point asymmetric
filter).
The application of the “cut and normalize” method brings the following formula for the
asymmetric weights

wj =
K(j/b)∑q

j=−mK(j/b)
j = −m, ..., q; q = 0, ...,m− 1 (12)

where K is the symmetric kernel function, and b is the bandwidth parameter that can be
different for each of the m asymmetric averages.
The choice of the kernel function K is based on the properties of the corresponding bound-
ary kernels. First of all, this requires to select the hierarchy of kernels and, then, within each
hierarchy the most appropriate order for the kernel function. Coherently with the symmetric
weights, the biweight and the triweight represent good alternative hierarchies for deriving
asymmetric Henderson filters for short lengths and asymptotically, respectively. Further-
more, to preserve the monotonic convergence to the symmetric filters, fourth order kernels
are also applied at the boundaries of the sample. The selection of the bandwidth parameter
b is a crucial choice. In practice, for asymmetric filters, these parameters are chosen a priori
in order to ensure a prespecified filter length (m + q + 1, q = 0, ...,m − 1), as well as a
rapid convergence to the corresponding symmetric filter. In the following, we discuss the
choice of optimal kernels and bandwidth parameters, optimal in the sense of minimizing
the size of revisions in the final estimates.

3.2 A measure of filter revisions

Following Dagum (1982), to derive a measure of filter revision, the behavior of the dif-
ferent smoothers is analyzed with respect to cyclical components. The set of weights
{wj , j = −m, ..., q} is called the impulse response function of the filter, and its prop-
erties are described in the frequency domain by looking at its Fourier transform, H(ω),
called the frequency response function. That is,

ŷt =
q∑

j=−m

wjyt+j =
q∑

j=−m

wj exp(−iω(t+ j))

= H(ω) exp(−iωt) = H(ω)yt.

H(ω) fully describes the effect of the linear filter on the given input. In particular,

H(ω) = G(ω) exp(−iϕ(ω)) (13)

where G(ω) is called the gain function of the filter and ϕ(ω) is the phase shift function.
G(ω) describes how much the amplitudes of a time series are amplified or reduced at the
frequency ω, whereas ϕ(ω) contains information about the translation on time of the cycli-
cal components.

In order to analyze and compare the properties of the boundary asymmetric kernels, we
take into account the frequency response function, that incorporates both the information
coming from the gain function in terms of revisions, and the information coming from the
phaseshift function in terms of delay to detect true turning points. Hence, we compute the
Euclidean distance between the frequency response function of the asymmetric filter Ha(·)
and the frequency response function of the corresponding symmetric Henderson filter H(·),
that is
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√∫ 1/2

0
|Ha(ω∗)−H(ω∗)|2dω∗ (14)

In order to improve the convergence of the boundary filters, optimal bandwidths for
each asymmetric filter, can be selected in order to minimize eq. (14).
Table 1 illustrates the optimal values selected for each of the biweight and triweight bound-
ary filters corresponding to the 9- and 13-term biweight and triweight symmetric weights,
the latter computed by fixing the bandwidths to m + 1 (see for details Bianconcini and
Quenneville, 2010). We can notice that the bandwidths are quite close for the several
asymmetric filters, with values ranging from m to m+ 1.

q 0 1 2 3

Biweight 4.01 4.23 5.13 4.13
Triweight 4.01 4.69 4.01 4.28

q 0 1 2 3 4 5

Biweight 6.01 6.01 6.38 6.01 6.01 6.50
Triweight 6.01 6.01 6.78 6.01 6.01 6.67

Table 1: Optimal bandwidths for the biweight and triweight boundary kernels associated
to 9-term and 13-term biweight and triweight optimal symmetric filter.

Looking at the spectral properties of the related asymmetric weights, Table 2 shows
that the convergence of the filters to the associated symmetric ones is improved mainly for
the last point filter, and for q ≥ 1 the distances are almost null.

q 0 1 2 3

Biweight 0.06 0.01 0.02 0.00
Triweight 0.07 0.01 0.03 0.00

q 0 1 2 3 4 5

Biweight 0.12 0.03 0.02 0.03 0.01 0.00
Triweight 0.14 0.05 0.01 0.03 0.02 0.00

Table 2: Euclidean distances between the frequency response function of the biweight
and triweight boundary kernels and the frequency response function of the corresponding
9-term and 13-term symmetric filters.

The asymmetric weights based on optimal bandwidths do not satisfy the unbiasedness prop-
erty of the associated symmetric averages. However, these filters present values of the first
moment similar to the Musgrave filters. Hence, when optimal bandwidths are selected, the
corresponding weights could pass a linear trend at the end of the sample period with small
bias, mainly for the first and second asymmetric filter. Similar conclusions can be drawn
for asymmetric weights associated to symmetric filter of any length, not reported here for
space reasons.
On the other hand, looking at the variability of the estimates, the leverage values of these

filters are computed. For the 9-term symmetric filter, the weight associated to the current
observation for the last point asymmetric filter is equal to 0.58 and 0.63 for the biweight
and triweight kernels, respectively. On the other hand, for the 13-term filter, these weights
are equal to 0.43 and 0.47 for the biweight and triweight, respectively.
In order to better evaluate the relationship of these optimal asymmetric weights with the
Musgrave filters, we compute their Euclidean distances as shown in Table 4. We notice that
the spectral properties of these filters are very similar, and we can claim that they provide
a very good compromise in terms of both revisions (gain function) and detection of true
turning points (phaseshift function).
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q 0 1 2 3 q 0 1 2 3∑m

j=−m
jwj

∑m

j=−m
j2wj

Biweight -0.35 0.02 0.16 0.01 Biweight 0.06 0.33 0.81 0.16
Triweight -0.28 0.03 0.12 0.01 Triweight 0.01 0.28 0.34 0.06∑m

j=−m
j3wj

∑m

j=−m
j4wj

Biweight 0.98 1.18 2.56 0.17 Biweight -4.44 -4.06 -5.82 -6.22
Triweight 0.94 1.40 1.07 0.12 Triweight -3.81 -5.07 -2.13 -5.95

Table 3: Properties of optimal asymmetric filters associated with the symmetric 9-term
Henderson filter.

m
Kernels 4 6
Biweight 0.19 0.13
Triweight 0.23 0.17

Table 4: Euclidean distances of the optimal last point biweight and triweight weights and
last point Musgrave filter for different values of m.

4. Empirical application

This section examines how the fourth order biweight and triweight boundary kernels per-
form on real data in comparison with the classical asymmetric Henderson filters developed
by Musgrave (1964).
We apply the last point filters to a set of 30 time series taken from the Hydman’s time se-
ries library (http://www-personal.buseco.monash.edu.au/ hyndman/TSDL/). These series
are seasonally adjusted and related to different fields (finance, labor market, production,
sales, transports and tourism, utilities). The periods selected vary to sufficiently cover the
various lengths published for these series. We want to study how the kernels and classical
estimators respond to the variability of the data. For each series, the length of the symmet-
ric filters is selected according to the I/C (noise to signal) ratio, as classically done in the
X11/X12ARIMA procedure. In the sample, the ratio ranges from 0.16 to 7.35, hence filters
of length 9, 13, and 23 terms are applied. The comparisons are based on the relative filter
revisions between the final symmetric filter S and the last point asymmetric filter A, that is,

Rt =
St −At

St
, t = 1, 2, ..., N. (15)

For each series and for each estimator, we calculate the ratio between the Mean Square
Error (MSE) of the revisions corresponding to the fourth order kernel RK and to the cor-
responding classical filter RC , that is MSE(RK)

MSE(RC)
. A comparison is also performed between

the biweight and triweight boundary kernels in order to analyze how they differently be-
have on real data. For all the estimators, the results, illustrated in Table 5, indicate that the
kernel last point predictors introduce smaller revisions than the classical ones, being the
ratio always smaller than one. This implies that the kernel estimates will be more reliable
and efficient than the ones obtained by the application of the classical Henderson filter. In
particular, for the biweight estimator, 80% of the sample has a ratio less than 0.93 and, in
general, it is never greater than 0.96. For the triweight filter, the ratio is less than 0.93 in
57% of the series, with highest value equal to 0.99. Furthermore, as highlighted by the last
column of Table 5, the biweight filter generally performs better than the triweight kernel,
even if their performance is very similar for all the series in the sample.
For current economic analysis, it is also of great importance to assess the performance of
the several estimators for turning point detection. A turning point is generally defined to
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Table 5: MSE revision ratios between kernels and classical last point predictors, as well as
between boundary kernels.

Macro-area Series Biweight/Classical Triweight/Classical Triweight/Biweight

Finance Monthly return on the S&P 500 index 0.85 0.89 1.05
Return to an investment strategy based on the paper rate 0.93 0.96 1.03
Commercial paper rate 0.85 0.88 1.03
Railroad bond yields 0.84 0.84 1.00
Mutual savings bank data end-of-month balance 0.82 0.73 0.89

Labour Market Wisconsin employment, fabricated metals 0.76 0.75 0.98
US male (20 years and over) unemployment figures 0.93 0.96 1.04
Unemployment benefits Australia 0.93 0.96 1.02
Women unemployed UK 0.86 0.89 1.04
Canadian total unemployment figures 0.84 0.83 0.99
US female (20 years and over) unemployment rate 0.84 0.86 1.01
Number of employed persons in Australia 0.91 0.95 1.04

Production Basic iron production in Australia 0.91 0.95 1.05
Production of chocolate confectionery in Australia 0.94 0.98 1.04
Production of Portland cement 0.93 0.93 1.00
Electricity production in Australia 0.93 0.97 1.05
Production of blooms and slabs in Australia 0.95 0.89 0.94
Production of blooms and slabs 0.94 0.93 0.99

Sales Sales of tasty Cola 0.83 0.81 0.97
Unit sales, Winnebago Industries 0.93 0.95 1.03
Sales of new one-family houses sold in US 0.93 0.97 1.04
Sales of souvenir shops in Quennsland, Australia 0.96 0.99 1.03
Demand for carpet 0.96 0.99 1.03

Transport and Tourism Portland Oregon, average bus ridership 0.83 0.80 0.96
US air passenger miles 0.91 0.91 0.99
International airline passengers 0.84 0.84 1.00
Weekday bus ridership, Iowa city 0.93 0.93 1.00
Passenger miles flow domestic UK 0.93 0.93 1.00

Utilities Average residential gas usage Iowa 0.93 0.98 1.06
Total number of customers 0.94 0.99 1.05

occur at time t if (downturn):

yt−k ≤ . . . ≤ yt−1 > yt ≥ yt+1 ≥ . . . ≥ yt+m

or (upturn)
yt−k ≥ . . . ≥ yt−1 < yt ≤ yt+1 ≤ . . . ≤ yt+m

for k = 3 and m = 1 given the smoothness of the trend cycle data (see, for more details,
Dagum, 1996). For each estimator, the time lag to detect the true turning point is obtained
by calculating the number of months it takes for the revised trend series to signal a turning
point in the same position as in the final trend series.
True turning points are those recognized in the economy after occurring. For instance, the
Business Cycle Dating Committee of the National Bureau of Economic Research (NBER)
had identified the last trough in the US economy in June 2009. To determine this date, the
behavior of various monthly indicators of the economic activity has been analyzed. Among
others, the committee considered a measure of monthly Gross Domestic Product (GDP)
developed by the private forecasting firm Macroeconomic Advisers (MAGDP), monthly
GDP and Gross Domestic Income (GDI) developed by James H. Stock and Mark W. Watson
(SWGDP, SWGDI), real personal income excluding transfers (INC), the payroll (PAY)
and household measures of total employment (HOU). Monthly data series for industrial
production (IIP) and manufacturing trade sales (MAN) have been also taken into account.
The committee designated June as the month of the trough for several of these indicators,
that is MAGDP, SWGDP, SWGDI, MAN, IIP. On the other hand, the trough was identified
in October 2009 for INC, and in December 2009 for PAY and HOU. The results obtained
by applying the classical and kernel estimators to all of these series are shown in Table 6.
It can be noticed that kernel asymmetric filters are quicker to detect turning points than
the Musgrave filters. In particular, the biweight kernel always detects the turning points
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Table 6: Time lag in detecting true Turning Points (TP) for Musgrave and kernel estimators.

Series True TP Length Musgrave Biweight Triweight
MAGDP 06/09 13 5 5 4
SWGDP 06/09 13 5 5 4
SWGDI 06/09 13 5 1 4
MAN 06/09 9 1 2 1
IIP 06/09 9 2 2 1
INC 10/09 13 5 1 4
PAY 12/09 9 4 2 1
HOU 12/09 9 1 2 1

only very few months after it has occurred, and faster than the classical Musgrave filter,
which is very well known for fast turning point detection. It also performs similarly to the
triweight kernel, but in some cases it detects the true turning point with much shorter delay,
that is three months earlier than the triweight. As highlighted in Table 7, for these series,
the biweight kernel also behaves better than the classical and the triweight in terms of total
revisions.

Table 7: Total size revisions for the NBER series.

Series Bi/Cl Tri/Cl Tri/Bi
MAGDP 0.926 0.936 1.011
SWGDP 0.926 0.936 1.011
SWGDI 0.921 0.931 1.010
MAN 0.851 0.896 1.053
IIP 0.857 0.905 1.056
INC 0.926 1.016 1.097
PAY 0.787 0.996 1.266
HOU 0.777 0.994 1.280

5. Conclusions

In this study, we have derived asymmetric trend-cycle filters, which are applied to the most
recent observations in order to obtain real time estimates.

We made use of the RKHS methodology, according to which hierarchies of Henderson
kernels are generated via the multiplication of the biweight and triweight density functions
with the corresponding orthonormal polynomials. These kernels depend on bandwidth pa-
rameters, that we selected using an optimal criteria to reduce revisions in the final estimates,
and to improve the detection of true turning points.

We found that the optimal biweight boundary kernels perform generally better than the
triweight ones both in terms of revisions and detection of true turning points. Furthermore,
both the boundary kernels always perform better than the classical Henderson filters applied
for real time estimation as developed by Musgrave (1964). In particular, the latter are very
well-know for fast turning point detection, but we have shown that the boundary kernels
can detect turning points with much shorter delay than the Musgrave filters, sometimes
more than three months in advance.
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