
Identifying and Visualizing Spatiotemporal Clusters on Map Tiles

Markus Löcher∗

Abstract
Scoring unusual events in space and time has been an active and important field of research for

decades: How do we (i) distinguish normal fluctuations in a stochastic count process from real
additive events, (ii) identify spatiotemporal clusters where the event is most strongly pronounced
and (iii) how do we efficiently graph these clusters in a map overlay ?
Supervised learning algorithms are proposed as an alternative to the computationally expensive
scan statistic. The task can be reduced to detecting over-densities in space relative to a background
density. We frame the relative density estimation as a binary classification problem.
In the light of recent advances of embedding map tiles in statistical software via the library RgoogleMaps
we are developing an integrated hotspot visualizer. The goal is to efficiently identify and visualize
spatiotemporal clusters in one environment.

Key Words: scan statistic, RgoogleMaps, hotspots, supervised learning, PRIM

1. Motivation

This paper summarizes recent advances in both the identification as well as the visual-
ization of spatial/spatiotemporal clusters. The latter is implemented via the R package
RgoogleMaps whereas the computationally demanding task of searching for regions of very
high or very low count density is expedited by supervised learning techniques such as clas-
sification trees. The motivation to want to draw on map tiles directly within R is twofold.
While the R environment boasts a long history of spatial analysis tools and libraries, the
plots have traditionally been created without any spatial context that a map would provide.
An example is shown in Figure 1 which shows two different ways of plotting the meuse [8]
data set. There are times when the left plot will be the preferred choice: a clean and simple
graph of the locations of interest with no clutter and no distractions. The analyst can focus
on the pattern itself and the marker attributes.

However, a lot of the modern massive data sets gathered such as location information
from mobile devices, surveys, crime data, vehicle tracks, demographic data, etc. require a
map based spatial context for even the most basic data explorations. In those settings, the
somewhat narrow or ”blind” exploration of spatial data on a blank background can be rather
limiting and often leads to less insight than would be possible had the data been graphed
on a map canvas. Anecdotally, we dare to speculate that the British phyisican John Snow
might have been slower to identify contaminated drinking water as the cause of the cholera
epidemic in 1854, had he not used a dot map to illustrate the cluster of cholera cases around
one of the pumps in London [6].

While there exist many html and/or GIS based solutions to this simple problem, the
overhead of switching tools and environments can be detrimental to efficient development.
In addition, the user often has to obey a number of constraints with respect to number
of data points, size and shape of the markers or polygons, etc.. The Google Static Map
URLs for example are restricted to 2048 characters in length [11] which in practice can
be very limiting. Note that the library RgoogleMaps focusses exclusively on static map
display within R and does NOT offer any dynamic map mashup capabilities. We refer the
interested reader to the fantastic packages plotGoogleMaps and googleVis instead.

∗Berlin School of Economics and Law, mloecher@hwr-berlin.de

Section on Statistical Graphics – JSM 2012

2854

Figure 1: (a) meuse data set visualized by the bubble() command in the sp library [9], (b)
meuse data set visualized by the bubbleMap() command in the R library RgoogleMaps [10]

2. Integration of maps into R: RgoogleMaps

The Google Static Maps API [11] allows easy download of Google Maps images without
requiring JavaScript. The Google Static Map service creates a map based on URL param-
eters sent through a standard HTTP request and returns the map as an image in various
formats. (Note: The Google Static Maps API does NOT require a Maps API key any
longer.) For a complete list of parameters such as zoom level, center, size, map type and
style and other options we refer the reader to the online documentation [11].
The RgoogleMaps package serves two purposes:

• Provide a comfortable R interface to query the Google server for static maps

• Use the map as a background image to overlay plots within R. This requires proper
coordinate scaling as outlined in the Appendix.

We will summarize the three essential commands needed to plot on a map background:

1. mapSD = GetMap(center=c(32.7073, -117.162), zoom=10, destfile=’SDconv.png’)

This command fetches a map tile which in this example is centered at the San Diego
convention center from the Google server and saves it to the local file SDconv.png. It
returns a list mapSD containing the image as well as all necessary paramaters which
are necessary to properly scale coordinates. The resulting map is shown in the left
Figure 2.

2. PlotOnStaticMap(mapSD, lat=myTrails$lon, lon=myTrails$lon, col=myTrails$col,
cex = myTrails$cex)

This command plots the points specified as a map overlay. Note that the full graphical
power of R could be utilized in this step, i.e. hundreds of thousands of points or lines
in any possible style and color and size can be overlaid. The resulting map is shown
in the right Figure 2.

Section on Statistical Graphics – JSM 2012

2855

Figure 2: Left: map tile png downloaded by the command mapSD=GetMap(...). Right:
plot created within R by the function PlotOnStaticMap(mapSD,...). See text for details.

3. PlotPolysOnStaticMap(map, shp, lwd=.5, col = shp[,’col’]);
This function plots/overlays polygons on a map. Typically, the polygons originate
from a shapefile. Figure 3 was actually created by a close cousin of PlotPolysOn-
StaticMap, namely the function ColorMap() which plots Levels of a variable in a
colour-coded map. The main difference is that ColorMap can handle spatial objects
as defined in the sp library directly.

bb = qbbox(lat = pennLC$geo[,"y"], lon = pennLC$geo[,"x"])
mapPennLC <- GetMap.bbox(bb$lonR, bb$latR, destfile = "pennLC.png")
ColorMap(100*pennLC$smoking[,2], mapPennLC, pennLC$spatial.polygon,
add = FALSE,alpha = 0.35, log = TRUE, location = "topleft")

In closing this section we would like to point out that despite its name the RgoogleMaps
library is not restricted to Google map tiles; the function GetMap.OSM() queries the Open-
StreetMaps server for maps, an example of which is shown in Figure 7.

3. Spatial Cluster Detection

Monitoring spatially and temporally varying activity of various kinds is an important tool
for many technologies and scientific disciplines. The spatial scan statistic [3, 4, 5] and
its associated public domain software SatScanTM [12] are widely used for the detection
and evaluation of disease clusters. We need to distinguish between two rather different
situations:

3.1 Aggregated Counts

In this spatial surveillance setting, each day we have data collected for a set of discrete
spatial locations si and want to identify ”true” clusters of elevated or reduced ”activitiy”.
This task can be broken down into two parts: first figuring out what we expect to see, and
then determining which regions deviate significantly from our expectations. For example,
in the application of disease surveillance, we examine the spatial distribution of disease
cases (or some related quantity, such as the number of emergency department visits or
over-the-counter drug sales of a specific type), and our goal is to determine whether any

Section on Statistical Graphics – JSM 2012

2856

Figure 3: Smoking rates in Pennsylvania as recorded in the pennLC data set which contains
lung cancer and smoking data from the Pennsylvania Department of Health website.

regions have sufficiently high case counts to be indicative of an emerging disease epidemic
in that area. Thus we first infer the expected case count for each spatial location (e.g. zip
code), typically based on historical data (though simpler approaches, such as assuming that
the number of cases is proportional to census population, can also be used). Then the next
step is to determine which (if any) regions have significantly more cases than expected.

In more detail: For each location si, we have a count ci (e.g. number of disease cases),
and an underlying baseline bi. The baseline may correspond to the underlying population
at risk, or may be an estimate of the expected value of the count (e.g. derived from the
time series of previous count data). Our goal, then, is to find if there is any spatial region S
(set of contiguous locations si) for which the counts are significantly higher than expected,
given the baselines. More formally, we

1. Choose models of the data under H0 (the null hypothesis of no clusters) and H1(S)
(the alternative hypothesis assuming a cluster in region S).

2. Define a score function F (S) which aims to separate the decision regions between
H0 and H1 based on aggregate counts alone. The original work by Kulldorff uses
the likelihood ratio which simplifies greatly under the Poisson model:

F (S) =
Pr(data|H1(S))

Pr(data|H0(S))
=

(
Cin

Bin

)Cin

·
(
Cout

Bout

)Cout

·
(
Call

Ball

)−Call

(1)

where ”in”, ”out”, and ”all” represent the aggregates of counts and baselines for si
inside region S, for si outside region S, and for all si respectively.

Section on Statistical Graphics – JSM 2012

2857

3. Find the ”most interesting” regions, i.e. those regions S with the highest values of
F (S).

4. Perform significance testing.

76.5°W 76°W 75.5°W 75

Most Likely Cluster

Figure 4: The data set NYleukemia contains census tract level (n = 277) leukemia data for
the 8 counties in upstate New York from 1978−1982, paired with population data from the
1980 census. Left: leukemia incidence plotted with RgoogleMaps. Right: clusters found
and visualized using the package SpatialEpi.

Step 3 from above is usually conducted as a massive, computationally intense, exhaustive
search. The next chapter advocates alternative greedy algorithms such as trees that will find
significant clusters with high probability and yet are extremely efficient in their complexity.

3.2 Point Process

The models described in the previous section are based on data observed/aggregated at dis-
crete locations that are considered to be non-random, as defined by a regular or irregular
lattice of location points. Those are typically referred to as discrete scan statistics[12]. In
a continuous scan statistics, observations may be located anywhere within a study area. By
aggregating the cases and population to discrete cells we often reduce the algorithmic bur-
den by orders of magnitude without losing too much spatial resolution. However, there is
no conceptual hurdle of applying the scan statistic and the supervised techniques described
in the next section to the original point process data, i.e. with no aggregation performed.

3.3 Unsupervised as Supervised Learning

Hastie et al [2](pp. 594-501) introduced the following idea for transforming the density
estimation problem into one of supervised function approximation:

Let g(x) be the unknown data probability density to be estimated, and g0(x)
be a specified probability density function used for reference. The data set
x1, x2, ..., xN is presumed to be an i.i.d. random sample drawn from g(x).

Section on Statistical Graphics – JSM 2012

2858

A sample of size N0 can be drawn from g0(x) using Monte Carlo methods.
Pooling these two data sets, and assigning mass w = N0/(N + N0) to those
drawn from g(x), and w0 = N/(N +N0) to those drawn from g0(x), results
in a random sample drawn from the mixture density (g(x) + g0(x))/2. If one
assigns the value Y = 1 to each sample point drawn from g(x) and Y = 0
those drawn from g0(x), then

E(Y |x) = g(x)

g(x) + g0(x)
=

g(x)/g0(x)

g(x)/g0(x) + 1

can be estimated by by supervised learning using the combined sample

(x1, y1), (x2, y2), . . . , (xN+N0 , yN+N0) as training data.

Figure 5: This is Figure 14.3 in [2]. Original caption: ”Density estimation via classifica-
tion. (Left panel:) Training set of 200 data points. (Right panel:) Training set plus 200
reference data points, generated uniformly over the rectangle containing the training data.
The training sample was labeled as class 1, and the reference sample class 0, and a semi-
parametric logistic regression model was fit to the data. Some contours for g(x) are shown.”

An example is shown in Figure 5, see caption for details. We believe that this technique
can be gainfully applied to the described epidemiologic setting where cases and popula-
tion naturally provide two classes. The background population frees us from the need to
generate a ”fake” reference distribution.

3.4 Detecting simple clusters of overdensity

We chose to apply two very different learning algorithms to a simulated Gaussian bump
embedded in uniform background data. The first natural choice are classification trees [1]
as implemented by the R library tree : A tree is grown by binary recursive partitioning using
the class label and choosing splits from the two spatial coordinates. Numeric variables are
divided into X < a and X > a; the split which maximizes the reduction in impurity is
chosen, the data set split and the process repeated. Splitting continues until the terminal
nodes are too small or too few to be split. For illustration purposes we pretend that these
artificial data were measured in the Manhattan area and plot them on a map background as
shown in Figure 6. We also plot the partitions found by the binary recursive algorithm and

Section on Statistical Graphics – JSM 2012

2859

Figure 6: A cluster found by a classification tree visualized on a Google map tile. The
numeric labels indicate the fraction of the positive class labels found in the respective rect-
angle.

find that the location and extent of the spatial cluster is identified rather accurately. The
labels indicate the fraction of the positive class labels found in the respective rectangle.
Note that the computational time needed to identify this cluster constitutes a tiny fraction
of the exhaustive search conducted by both Satscan [12] and even the ”fast scan statistic”
[7]. There are no guarantees that all significant clusters are found but in many situations
that would be considered a fair tradeoff.

Tree-based methods try to make the response averages in each box as different as pos-
sible. The most common choices for the cost functions used when growing and pruning the
tree are the misclassification error, the Gini Index and the cross entropy [1, 2]. Minimiz-
ing those loss functions is not directly equivalent to maximizing the score function Eq. 1.
We believe that the tree growing/pruning algorithm could be easily extended to optimize a
score function instead.

The patient rule induction method (PRIM) as outlined in Hastie et al [2](pp. 317-320)
also finds boxes in the feature space, but seeks boxes in which the response average is high:

The main box construction method in PRIM works from the top down, start-
ing with a box containing all of the data. The box is compressed along one
face by a small amount, and the observations then falling outside the box
are peeled off. The face chosen for compression is the one resulting in the
largest box mean, after the compression is performed. Then the process is
repeated, stopping when the current box contains some minimum number of

Section on Statistical Graphics – JSM 2012

2860

Figure 7: A cluster found with the patient rule induction method (PRIM), this time visual-
ized on an Open Street map tile.

data points.After the top-down sequence is computed, PRIM reverses the pro-
cess, expanding along any edge, if such an expansion increases the box mean.
This is called pasting. Since the top-down procedure is greedy at each step,
such an expansion is often possible. The result of these steps is a sequence of
boxes, with different numbers of observation in each box. Cross-validation,
combined with the judgment of the data analyst, is used to choose the optimal
box size.

The authors speculate that ”the ability of PRIM to be more patient should help the top-down
greedy algorithm find a better solution”. We found this algorithm to be naturally tailored to
spatial cluster detection and applied it (R package prim) to the same artificial data described
above. The resulting two boxes found are visualized in Figure 7 where we chose a map tile
obtained from the OpenStreetMaps server instead of Google.

4. Outlook

The first part of this paper describes a mature and established software package while the
ideas put forward in the second part are still in a very early phase. Many open questions
remain whether supervised methods could successfully replace or augment the existing
scan statistic hotspot search algorithms. The tradeoffs involved seem characteristic of the
general ”exhaustive versus greedy” algorithmic choice. At this point we have not performed
any significance testing or benchmarking which is a natural next step. An often overlooked
fact is that randomization can typically be done once ”offline” and not repeated for each

Section on Statistical Graphics – JSM 2012

2861

new arrangement of cases! That is because we randomly create a large numberR of replica
grids by sampling under the null hypothesis, given our maximum likelihood parameter
estimates for the null. For example, for the Poisson model based approach mentioned
above: once we have found the highest scoring region S∗ and its score F ∗ = F (S∗) we
generate counts independently from ci ∼ Poisson(qall · bi) using the maximum likelihood
estimate qall = Call/Ball. We then find the highest scoring region and its score for each
replica grid: the p-value of S∗ is (Rbeat+1)/(R+1) , whereRbeat is the number of replicas
with F* higher than the original grid. If this p-value is less than some threshold (e.g. 0.05),
we can conclude that the discovered region is unlikely to have occurred by chance, and is
thus a significant spatial cluster; we can then examine secondary clusters. Otherwise, no
significant clusters exist. Hence, as long as the background populations bi stay the same,
we do not have to repeat the randomization for new case distributions ci ! That is especially
important for streaming data settings where decisions have to be made rapidly but offline
time is cheap. In that sense the computational burden of the scan statistic for repeated
geographic surveiilance is often severely (R ∼ 1000) overstated in the literature. (Only the
isuse of multiple testing is amplified for repeated scans.)
In closing, we would like to point out that both classification trees and the PRIM algo-
rithm can very easily be extended to spatiotemporal data. Adding a temporal dimension is
gracefully handled by these types of partitioning methods.

5. Appendix: MapMath Details

We measure latitude and longitude in degrees but assume that the trigonometric functions
used below expect units to be in radians.
With ˜lat = π · lat/180, the transformation from lat/lon to pixels is given by:

Ỹ =
1

2π
log

(
1 + sin (˜lat)

1− sin (˜lat)

)
(2)

Y = 2zoom−1 ∗ (1− Ỹ), X = 2zoom−1 ∗ (X̃ + 1) (3)

The integer part of X,Y specifies the tile, whereas the fractional part times 256 is the pixel
coordinate within the Tile itself:

x = 256 ∗ (X − bX), y = 256 ∗ (Y − bY)

Inverting these relationships is rather straightforward. Eq. (2) leads to

˜lat = 2πn± sin−1

(
exp 2πỸ − 1

exp 2πỸ + 1

)
+ π, n ∈ Z (4)

whereas inverting Eqs. (3) gives

Ỹ = 1− Y/2zoom−1, X̃ = X/2zoom−1 − 1

For longitude, the inverse mapping is much simpler: Since X̃ = lon/180, we get

lon = 180 ·
(
X/2zoom−1 − 1

)
.

As a final remark, note that while latitude increases heading north, Google maps Y coordi-
nates move opposite, i.e. increase southward.

Section on Statistical Graphics – JSM 2012

2862

References

[1] Leo Breiman, Classification and regression trees, Wadsworth International Group, Bel-
mont, Calif., 1984 (English).

[2] Trevor Hastie, Robert Tibshirani, and J. H Friedman, The elements of statistical learn-
ing data mining, inference, and prediction, Springer, New York, 2009 (English).

[3] Martin Kulldorff, A spatial scan statistic, Communications in Statistics - Theory and
Methods 26 (1997), no. 6, 1481–1496.

[4] Martin Kulldorff, Prospective time periodic geographical disease surveillance using a
scan statistic, Journal of the Royal Statistical Society: Series A (Statistics in Society)
164 (2001), no. 1, 6172 (en).

[5] Martin Kulldorff, Richard Heffernan, Jessica Hartman, Renato Assuno, and Farzad
Mostashari, A SpaceTime permutation scan statistic for disease outbreak detection,
PLoS Med 2 (2005), no. 3, e59.

[6] Johnson, Steven (2006). The Ghost Map: The Story of London’s Most Terrifying Epi-
demic and How it Changed Science, Cities and the Modern World. Riverhead Books.
pp. 195196.

http://en.wikipedia.org/wiki/1854_Broad_Street_cholera_
outbreak

[7] Daniel B. Neill, Fast subset scan for spatial pattern detection, Journal of the Royal
Statistical Society: Series B (Statistical Methodology) 74 (2012), no. 2, 337360 (en).

[8] The meuse data set gives locations and topsoil heavy metal concentrations, along with a
number of soil and landscape variablesat the observation locations, collected in a flood
plain of the river Meuse, near the village of Stein (NL). Heavy metal concentrations
are from composite samples of an area of approximately 15 m x 15 m.

[9] library(sp);data(meuse);
coordinates(meuse) <- c("x", "y");
bubble(meuse, "zinc", main = "zinc concentrations (ppm)");

[10] Inspired by the function bubbleGoogleMaps() from the package plotGoogleMaps :

library(RgoogleMaps); library(sp); data(meuse);
coordinates(meuse)<- ˜ x+y;
proj4string(meuse) <- CRS(’+init=epsg:28992’);
m<-bubbleMap(meuse,zcol=’zinc’’);

[11] http://code.google.com/apis/maps/documentation/
staticmaps/

[12] Software to compute the scan statistic: http://www.satscan.org/

Section on Statistical Graphics – JSM 2012

2863

