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Abstract 

Recent research has fostered new guidance on the analyses of incomplete data.  Common 

elements from recent guidance are distilled and means for putting the guidance into 

action are proposed.  Whether or not follow-up data after discontinuation of the originally 

randomized medication and / or initiation of rescue medication contribute to the primary 

estimand depends on the context.  In outcomes trials (intervention thought to influence 

disease process) follow-up data is often included in the primary estimand, whereas in 

symptomatic trials (intervention alters symptom severity but does not change underlying 

disease) follow-up data are often not included.  Regardless of scenario, the confounding 

influence of rescue medications can render follow-up data of little use in understanding 

the causal effects of the randomized interventions.  A sensible primary analysis can often 

be formulated in the missing at random (MAR) framework.  Sensitivity analyses 

assessing robustness to departures from MAR are crucial.  Plausible sensitivity analyses 

can be pre-specified using controlled imputation approaches to either implement a 

plausibly conservative analysis or to stress test the primary result, and used in 

combination with other model-based MNAR approaches such as selection, shared 

parameter, and pattern-mixture models.  The example data set and analyses used in this 

paper are freely available for public use at www.missingdata.org.uk.   
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Introduction 

 

Missing data is an ever present problem in clinical trials that can bias treatment group 

comparisons and inflate rates of false negative and false positive results.  However, 

missing data has been an active area of investigation with many advances in statistical 

theory and in our ability to implement that theory.  These research findings set the stage 

for new or updated guidance for the handling of missing data in clinical trials.  For 

example, a pharmaceutical industry group published a consensus paper (Mallinckrodt et 

al, 2008) and an entire text book was devoted to the topic of missing data in clinical trials 

(Molenberghs and Kenward, 2007).  New guidance was released by the EMEA (CHMP, 

2010), an expert panel commissioned by FDA issued an extensive set of 

recommendations (NRC, 2010), and two senior leaders at FDA published their thoughts 

on the NRC recommendations (O’Neill and Temple, 2012).  The intent of this paper is to 

distill common elements from recent recommendations, guidance documents, and texts to 

propose means and provide tools for implementing the guidance.   

 

 

  

Biopharmaceutical Section – JSM 2012

335



2 

 

Estimands 
 

An estimand is simply what is being estimated.  Components of estimands for 

longitudinal trials may include the parameter (e.g., difference between treatments in mean 

change), time point or duration of exposure (e.g., at Week 8), outcome measure (e.g., 

diastolic blood pressure), population (e.g., in patients diagnosed with hypertension), and 

inclusion / exclusion of follow-up data after discontinuation of the originally assigned 

study medication and/or initiation of rescue medication. 

  

Much of the debate on appropriate estimands, and by extension whether or not follow-up 

data are included in an analysis, centers on whether the focus is on efficacy or 

effectiveness.  Efficacy may be viewed as the effects of the drug if taken as directed: for 

example, the benefit of the drug expected at the endpoint of the trial, assuming patients 

took the drug as directed.  This has also been referred to as a per-protocol estimand.  

Effectiveness may be viewed as the effects of the drug as actually taken, and has also 

been referred to as an ITT estimand (Mallinckrodt et al, 2008). 

 

Referring to estimands in the efficacy vs. effectiveness context ignores the fact that many 

safety parameters need to be analyzed.  It does not make sense to test an efficacy 

estimand for a safety outcome.  A more general terminology for hypotheses about 

efficacy and effectiveness is de-jure (if taken as directed, per protocol) and de-facto (as 

actually taken, ITT), respectively.  

The NRC guidance (NRC, 2010) lists the following five estimands:  

 

1. Difference in outcome improvement at the planned endpoint for all randomized 

participants.  This estimand compares the mean outcomes for treatment vs. control 

regardless of what treatment participants actually received.  Follow-up data (after 

withdrawal of initially randomized medication and/or initiation of rescue medication) are 

included in the analysis.  Estimand 1 tests de-facto hypotheses regarding the effectiveness 

of treatment policies.   

 

2. Difference in outcome improvement in tolerators. This estimand compares the mean 

outcomes for treatment vs. control in the subset of the population who initially tolerated 

the treatment.  This randomized withdrawal design has also been used to evaluate long 

term or maintenance of acute efficacy.  An open label run-in phase is used to identify 

patients that meet criteria to continue.  Patients that continue are randomized (usually 

double-blind) to either continue on the investigational drug or switch to control.   

 

3. Difference in outcome improvement if all patients adhered.  This estimand addresses 

the expected change if all patients remained in the study.  Estimand 3 addresses de-jure 

hypotheses about the causal effects of the initially randomized drug if taken as directed – 

an efficacy estimand.   

 

4. Difference in areas under the outcome curve during adherence to treatment, and,   

5. Difference in outcome improvement during adherence to treatment. 

Estimands 4 and 5 assess de-facto hypotheses regarding the initially randomized drug.  

These estimands are based on all patients and simultaneously quantify treatment effects 

on the outcome measure and the duration of adherence.  As such, there is no missing data 

due to patient dropout.   
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Each estimand has strengths and limitations.  Estimand 1 tests hypotheses about 

treatment policies.  However, the most relevant research questions are often about the 

causal effects of the investigational drugs, not treatment policies.  This is also relevant for 

product labels where patients hope to learn what they may expect if they take the product 

as prescribed.  In the intention-to-treat (ITT) framework where inference is drawn based 

on the originally assigned treatment, the inclusion of follow-up data when rescue 

medications are allowed can mask or exaggerate both the efficacy and safety effects of 

the initially assigned treatments, thereby invalidating causal inferences for the originally 

assigned medication (Mallinckrodt and Kenward, 2009).   

 

O’Neill and Temple (2012) noted that including follow-up data in the primary estimand 

may be more useful in outcomes trials (where the presence / absence of a major health 

event is the endpoint and/or the intervention is intended to modify the disease process), 

whereas in symptomatic trials (symptom severity is the endpoint) the complications of 

follow-up data are usually avoided in the primary estimand. 

 

Estimand 2 focuses on a patient subset and would not be applicable when inference to all 

patients was desired.  Relevance of this estimand is further complicated because in most 

situations it is not known who will tolerate, and thus all patients must be exposed to the 

safety risks of the drug, whereas efficacy inferences apply only to the tolerators.   

 

Although knowing what happens if a drug is taken as directed, as is done for estimand 3, 

is important, it is also hypothetical because in actual clinical settings there will always be 

some patients who do not adhere (NRC, 2010).    

 

For estimands 4 and 5, assessing drug effectiveness during adherence ignores that in 

many instances benefit disappears when patients stop taking the medication (Permutt and 

Pinheiro, 2009;  Kim, 2011).  In such situations, estimands 4 and 5 overestimate 

effectiveness at the planned endpoint of the trial.   

 

None of the estimands proposed in the NRC guidance (NRC, 2010) address de-facto 

(effectiveness) hypotheses for the initially randomized medication at the planned 

endpoint of the trial.  The estimands in the NRC guidance were not intended to be an 

exhaustive list.  Therefore, a 6
th
 estimand is proposed that may be particularly relevant in 

the early evaluations and initial regulatory approvals of new medications. 

 

6. Difference in outcome improvement in all randomized patients at the planned 

endpoint of the trial attributable to the initially randomized medication.  The key 

attributes of estimand 6 are also summarized in Table 1 (Mallinckrodt et al, 2012).  

Estimand 6 assesses effectiveness at the planned endpoint, focusing on the causal effects 

attributable to the initially randomized medications.  Conceptually, estimand 1 and 

estimand 6 require follow-up data.  Unlike estimand 1, the intent with estimand 6 is to 

avoid the confounding effects of rescue medications.  However, ethical considerations 

often mandate that rescue medications be allowed after patients discontinue randomized 

study medication.   

 

Estimand 3 and estimand 6 focus on causal effects of the initially randomized 

medications, in all randomized patients, at the planned endpoint of the trial.  Estimand 3 

focuses on what would have happened if patients adhered to treatment and estimand 6 
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focuses on what was actually observed.  Estimand 3 addresses de-jure (efficacy) 

hypotheses and estimand 6 addresses de-facto (effectiveness) hypotheses.   Estimand 3 

and estimand 6 can be used in combination as the primary and secondary estimands, an 

approach that would be particularly useful in trials assessing symptomatic treatments.  

For example, in a proof-of-concept study focus may be primarily on efficacy, but as 

development progresses focus may shift towards effectiveness if the conditions under 

which the drug is studied are naturalistic enough to be generalized to clinical practice. 

 

Given the confounding effects of rescue medications and the ethical need to allow them, 

one approach to testing de-facto hypotheses is to impute the data after discontinuation of 

the initially randomized study medication under the assumption that initially randomized 

active medications have no effect after they are discontinued.  This assumption is often 

reasonable in trials of symptomatic interventions (O’Neill and Temple, 2012).   

 

Estimation of this estimand has most commonly been done by imputing values using 

baseline observation carried forward (BOCF).  However, using baseline values as the 

measure of no benefit ignores the improvements that are often seen in trials due to non-

pharmacologic reasons and would be valid only in those situations where there was no 

change in a placebo group over time.  Alternative means to test de-facto hypotheses have 

come into the literature recently and these alternatives are described in a subsequent 

section.   

 

Several approaches may also be taken in estimation of de-jure estimands.  For example, 

although endpoint contrasts are often the focus, regression parameters (e.g., linear or 

linear plus quadratic slopes) for treatment vs. control can be compared. 

 

 

Analyses 

 

In order to choose an appropriate analysis, the mechanism(s) leading to the missingness 

must be considered.  In longitudinal clinical trials MCAR is not likely; MAR is often 

plausible but never provable; and, going beyond MAR to MNAR requires assumptions 

that are not testable.  Hence, no single MNAR analysis can be definitive (Verbeke and 

Molenberghs, 2000).    

 

Consensus is emerging that a primary analysis based on MAR is often reasonable, 

whereas complete case and single imputation methods that require MCAR and / or other 

restrictive assumptions are not reasonable (Molenberghs and Kenward, 2007; 

Mallinckrodt et al, 2008; NRC, 2010).  Primary analyses based on MAR may be 

especially reasonable when combined with rigorous efforts to maximize retention on the 

initially randomized medications.  Methods common in the statistical literature based on 

MAR include likelihood-based analyses, multiple imputation (MI) and weighted 

generalized estimating equations (wGEE) (Molenberghs and Kenward, 2007).  The 

specific attributes of each method can be used to best tailor an analysis to the situation at 

hand.   

 

With an MAR primary analysis, assessing robustness of conclusions to departures from 

MAR via sensitivity analyses is essential.  Although there may be need for additional 
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sensitivity analyses inspired by trial results, a parsimonious set of plausible sensitivity 

analyses should be pre-specified and reported.   

 

Three common families of MNAR analyses are shared-parameter models, pattern-

mixture models, and selection models (Molenberghs and Kenward, 2007).  As typically 

implemented, these approaches assess de-jure estimands.  Selection models are 

conceptually multivariate models for repeated measures, where one variable is the 

efficacy outcome from the primary analysis and the second is the repeated binary 

outcome for dropout that is modeled via logistic regression.  Pattern-mixture models fit a 

response model for each pattern of missing values weighted by their respective 

probabilities.  Patterns are often defined by time of dropout, but could be defined by other 

means, such as reason for discontinuation.  In shared-parameter models a set of latent 

variables, latent classes, and/or random effects is assumed to drive both the measurement 

and missingness processes.  Shared-parameter models can be thought of as multivariate 

models, where one variable is the continuous efficacy outcome from the primary analysis 

and the second is (typically) a time to event analysis for dropout.  

 

Recently, another family of methods referred to as controlled imputation has seen 

increasing discussion in the literature and use in practice.  Controlled imputation 

approaches such as those discussed by Little and Yao, 1996; Carpenter and Kenward, 

2007; Ratitch and O’Kelly, 2011) can be thought of as specific versions of pattern-

mixture models.  The basic idea is to construct a principled set of imputations that exhibit 

a specific statistical behavior, often a departure from MAR, in order to assess either 

sensitivity of de-jure estimands or as a primary means to assess de-facto estimands 

(Teshome et al; 2012). 

 

In the MAR setting, MI uses separate imputation models for the drug and placebo 

(control) arms (in a two-arm study).  For MNAR analyses, one sub-family of approaches 

within controlled imputation, referred to as reference-based imputation, uses one 

imputation model (or in some manner borrows information) from the reference (e.g., 

placebo, or standard of care) group but then applies that model to both the drug and 

placebo arms.  Alternatively, a single imputation model can be developed from all the 

data and applied to both arms.   

 

Using one imputation model for both treatment arms diminishes the difference between 

the arms compared with MAR approaches that use separate imputation models for each 

arm.  The intent is to generate a plausibly conservative efficacy estimate that can be used 

to define the lower bound of values for the set of sensitivity analyses; or, to generate an 

estimate of effectiveness that reflects a change in or discontinuation of treatment.   

 

Controlled imputation can also be used to assess sensitivity by repeatedly adjusting the 

imputations to provide a progressively more severe stress test to assess how extreme 

departures from MAR must be to overturn the primary result.   For example, the analysis 

can assume that patients who discontinued had outcomes that were worse than otherwise 

similar patients that remained in the study (NRC, 2010; Carpenter and Kenward, 2007).  

The difference (adjustment) in outcomes between dropouts and those who remain can be 

a shift in location (mean) or slope, and is referred to as delta. 
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Typically, only the experimental arm is delta-adjusted while the control arm is handled 

using an MAR-based approach.  Delta-adjustment can be applied to only the first visit 

with missing data or to all visits with missing data; and, delta adjustment can be applied 

as part of a visit-by-visit imputation or after completion of all imputations.   

 

Delta adjustment after imputation simply subtracts a constant from the imputed values 

and the adjustment at a visit does not influence imputed values at other visits.  With 

delta-adjustment in visit-by-visit imputation, missing values are imputed as a function of 

both actually observed and previously imputed delta-adjusted values.  In this setting, 

delta-adjustment influences imputed values at the visit to which it is applied and also 

influences imputed values at subsequent visits through the imputation model.  Delta 

adjustment applied to every visit in a visit-by-visit imputation results in an accumulation 

of adjustments and thus implies a greater departure from MAR than delta-adjustment at a 

single visit. 

 

The flexibility and transparent assumptions of controlled imputations allows the methods 

to be tailored to the clinical setting and the analytic goals.  However, these are 

comparatively new approaches and their attributes in various scenarios have not been 

fully characterized.    

 

  

Example 

 

The data set used in this example was somewhat contrived to avoid implications for 

marketed drugs.  Nevertheless, the key features of the original data were preserved.  The 

original data were from an antidepressant clinical trial reported by Goldstein et al (2004).  

The trial contained four treatment arms, with patients randomized in a 1:1:1:1 ratio to two 

doses of an experimental medication (subsequently granted marketing authorizations in 

most major jurisdictions), an approved medication, and placebo.  Postbaseline 

assessments on the Hamilton 17-item rating scale for depression (HAMD17) (Hamilton, 

1960) were taken at baseline and weeks 1, 2, 4, 6, and 8.  In this re-analysis the Week-8 

observations were not included.  All patients from the original placebo arm were included 

along with a contrived drug arm that was created by randomly selecting patients from the 

three non-placebo arms. 

 

Completion rates were 76% (64/84) for drug and 74% (65/88) for placebo.  Visitwise 

mean changes for patients that completed the trial versus those who discontinued early 

are summarized in Figure 1.  Patients who discontinued early had less favorable 

outcomes than completers, suggesting that missing data did not arise from an MCAR 

mechanism.    

 

The analysis plan focused on estimand 3, a de-jure (if taken as directed) efficacy 

hypothesis.  The key assumption of the direct-likelihood primary analysis, and the focus 

of sensitivity analyses, was that missing data arose from an MAR mechanism.  Other 

assumptions not tested here which can be objectively evaluated include assumptions 

regarding time trends, correlation structure, and error distribution.  A secondary goal of 

the analysis was to assess a de-facto (effectiveness) hypothesis, estimand 6.  Sensitivity 

analyses included: 1) inclusive models in the MAR framework via MI and wGEE; 2) 
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model-based MNAR methods, including selection, pattern mixture, and shared parameter 

models; and, 3) reference-based and delta-adjustment controlled imputations.   

 

The primary analysis used a restrictive model.  Mean changes from baseline were 

analyzed using a restricted maximum likelihood (REML)-based repeated measures 

approach.  The analysis included the fixed, categorical effects of treatment, investigative 

site, visit, and treatment-by-visit interaction, as well as the continuous, fixed covariates of 

baseline score and baseline score-by-visit-interaction.  An unstructured (co)variance 

structure shared across treatment groups was used to model the within-patient errors.  The 

Kenward-Roger approximation was used to estimate denominator degrees of freedom and 

adjust standard errors.  Analyses were implemented using SAS PROC MIXED (SAS, 

2008).  The primary comparison was the contrast between treatments at the last Visit 

(Week-6).  Results from the primary analysis are summarized in Table 1.   

 

Within group LSMEAN changes at Week 6 were -7.05 for drug vs. -4.41 for placebo.  

Negative values indicated improvement.  Therefore, the advantage of drug over placebo 

was -2.64 (SE=1.02, P= 0.010) – a difference that was statistically significant, but not so 

robust that the high rate of missing data could be disregarded.   

 

A parametric selection model was implemented using SAS PROC MIXED for starting 

values and for certain analyses and PROC IML was used to build and solve necessary 

equations.  In the measurement model the primary outcome was modeled using the 

repeated measures model as in the primary analysis.  The drop out model was a logistic 

regression that fit the log odds of dropout as a function of separate intercepts (Ψ1,Ψ2) for 

each treatment group, along with separate linear regression coefficients for previous 

(Ψ3,Ψ4) and current (possibly unobserved) efficacy outcomes (Ψ5,Ψ6).  Hence the 

measurement and drop out models were linked as the dependent variable from the 

measurement model was an independent variable in the dropout model.  The parameters 

Ψ5 andΨ6 were of interest because they were the ―MNAR‖ part of the model.  Fitting 

separate models for each treatment allowed for different departures from MAR for drug 

and placebo groups.  In addition to estimating parameters from the data, a wide range of 

values for Ψ5 and Ψ6 were input for illustration purposes.  Whenever possible, sensitivity 

analysis should be based on a pre-defined, plausible range of values for Ψ5 and Ψ6.  

 

Results from selection model analyses are summarized in Table 1.  As expected, 

assuming MAR by inputting Ψ5 and Ψ6 = 0.0 (first row of Table 2) yielded a treatment 

contrast of -2.64, matching the primary direct likelihood analysis.  When all parameters 

were estimated (second row of Table 5) the treatment contrast was -2.48, with SE = 1.09, 

and P = 0.023.  Therefore, compared with the MAR primary analysis the MNAR 

selection model yielded a slightly smaller treatment contrast, a slightly larger standard 

error, and a slightly larger but still significant p value.  

 

Results from inputting values for Ψ5 and Ψ6 are summarized at the bottom of Table 5.  

Negative (positive) values for Ψ5 and Ψ6 led to within group mean changes that were 

greater (less) than from the MAR results.  This result makes sense in that if better (worse) 

outcomes were more likely to be missing, had they been observed means would have 

showed greater (smaller) improvement. 
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When Ψ5 and Ψ6 differed, treatment contrasts followed a consistent pattern.   Whenever 

Ψ5 (the regression coefficient for the drug group) was less than Ψ6 (the regression 

coefficient for the placebo group) the treatment contrast was greater than from the MAR 

primary analysis; when Ψ5 was greater than Ψ6 the treatment contrast was smaller than in 

MAR.  Across the range of input values the endpoint treatment contrast ranged from -

1.40 to -3.78.  Given the lack of a pre-specified plausible range of input values no 

inference is drawn from this range of results. 

 

Several caveats apply to the selection model results above and to MNAR models 

generally.  These models inherently rely on untestable assumptions.   They are highly 

sensitive to influential observations and distributional assumptions.  Different models 

with similar maximized likelihoods (i.e.,, with similar plausibility with respect to the 

observed data) can have completely different implications for the dropout process.  And, 

an alternate parameterization of the selection model that fits the increment from the 

penultimate to the final visit rather than the final outcome itself can lead to meaningfully 

different interpretations of the dropout process.  

 

Table 1.  Results from selection model analyses 

________________________________________________________________________ 

    Endpoint  LSmean Change    Endpoint  Standard 

Model
1
  Ψ5

2   
Ψ6

 2      
Drug   Placebo         Contrast     Error P value 

 

MAR   0.0  0.0      7.05  4.41  -2.64       0.98 0.007 

Estimate -0.13 -0.16       7.48  5.00  -2.48   1.09 0.023 

________________________________________________________________________ 

 

Input   0.0  0.2      7.07  3.67  -3.40       1.02 < .001 

Input   0.0 -0.2      7.06  5.13  -1.93   0.97  0.047 

Input   0.0 -0.4      7.07  5.67  -1.40   0.97  0.150 

 

Input   0.2  0.0      6.39  4.43  -1.96   1.02 0.054 

Input  -0.2  0.0      7.69  4.41  -3.28   0.97 < .001 

Input  -0.4  0.0      8.18  4.40  -3.78   0.97 < .001 

 

1. Estimate indicates all model parameters were estimated and the values in the Ψ5 

and Ψ6 columns are estimates of those parameters; input indicates values for Ψ5 

and Ψ6 were input and the values in the Ψ5 and Ψ6 columns are the input values. 

2. Ψ5 and Ψ6 are the regression coefficients (drug and placebo, respectively) for the 

association between the current, possibly missing efficacy scores and the 

logit for probability of dropout  

________________________________________________________________________ 

 

Pattern-mixture models were implemented by imputing missing values using the non-

future dependent type of complete case and neighboring case missing value restrictions 

(CCMV and NCMV, respectively).  See Molenberghs and Kenward (2007) for detailed 

descriptions of the restrictions.   Dropout patterns were defined by the visit where the last 

observation for the primary analysis was obtained.  Imputations were implemented using 

SAS PROC MI and PROC MI ANALYZE (SAS, 2008).   Completed data sets were 
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analyzed using the same repeated measures model as for the primary analysis with the 

addition of terms for dropout group and its interactions with treatment and time.  

 

Results from pattern-mixture model analyses are summarized in Table 2.   Endpoint 

treatment contrasts using NCMV and CCMV restrictions were -2.95 and -2.67, 

respectively, with similar standard errors and p values < 0.01.  Given both approaches 

yielded similar results, no attempt is made to justify one as more relevant than the other 

and final inference from the sensitivity analyses is based on results from NCMV.    

 

Table 2.  Results from pattern-mixture model analyses 

________________________________________________________________ 

 

Identifying  Endpoint Standard  

Restriction
1
  Contrast Error  P value 

 

CCMV   -2.68  0.99  0.007  

NCMV    -2.95  0.99  0.003 

 

1. CCMV = non future dependent complete case missing value 

2. NCNV = non future dependent neighboring case missing value   

_______________________________________________________________ 

 

The intent for the shared parameter model was to model efficacy outcomes using he same 

repeated measures model as for the primary analysis, to use the efficacy outcomes in the 

time to dropout part of the model.  However, due to convergence problems a parametric 

model for time (dependent variable linearly related to square root of time) was used 

rather than modeling time as unstructured.  Two shared-parameter models were 

implemented using SAS PROC NLMIXED.  The first model had no linkage between the 

measurement and dropout models.  A second model linked the dropout and measurement 

models via separate random intercepts and slopes by treatment group. 

 

Results from shared-parameter model analyses are summarized in Table 3.   Using no 

linkage between the dropout and measurement models yielded an endpoint contrast of –

2.92.  Using the separate intercept and slope linkages by treatment group yielded a 

slightly larger endpoint contrast of -3.00, with a standard error that was also larger, 

resulting in a small increase in the p value for the MNAR model.     

 

Table 3.  Results from shared parameter model analyses  

________________________________________________________________________ 

    Endpoint Standard  

Model    Contrast Error  P value 

 

Naïve model (MAR)  -2.92  0.93  0.002 

Int + slope by trt linkage -3.00  1.03  0.004 

_________________________________________________________________ 

 

Three methods of reference-based imputations were implemented, each based on MI 

using a multivariate repeated measures model where the means for the drug arm were 

altered using information from the placebo arm.  Although it is commonly stated that 5 
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rounds of imputation is sufficient to yield a high degree of efficiency, stability of results 

is important in this setting.  Our experience suggests that many more rounds of 

imputation are needed to stabilize results.  These analyses used 5000 imputations.    

 

The jump to reference (J2R) method used the active means up to withdrawal and then 

jumps to the means in the placebo arm after withdrawal.  That is, immediately upon 

withdrawal, all benefit from the treatment was gone, thereby modeling the effectiveness 

of a symptomatic treatment with a short duration of effect.  The J2R approach usually 

results in the largest decrease in the difference between the experimental and reference 

group of the three methods used in this example.   

 

In the copy reference (CR) method, previous outcomes were included in the imputation 

model to imput values as if drug treated patients who dropped out had been on placebo 

throughout the study.  Therefore, if a patient had good outcomes while on drug, those 

favourable outcomes contributed to the predictions of the missing values based on 

placebo imputation model.  This approach generally results in a more gradual decay of 

the treatment effect compared with J2R  This approach is useful for modeling the 

effectiveness of a symptomatic treatment with a longer duration of action, conditions 

matching those in the example data.  Although some minor differences in implementation 

exist, the CR method is conceptually similar to the approach termed placebo multiple 

imputation (pMI) in Teshome et al (2012) and detailed in Ratitch and O’Kelly (2011). 

 

The copy increment from reference (CIR) method used the active means up to 

withdrawal but then increments using the changes in the mean from visit to visit seen in 

the placebo arm.  Therefore, improvement prior to withdrawal is maintained, but after 

withdrawal the trajectory is parallel to that for the placebo.  This approach models 

effectiveness of a disease modifying treatment and usually has the least impact of these 

three sensitivity analyses.     

 

Results from the reference-based imputations are summarized in Table 4.  The endpoint 

contrast from CR was -2.20, with a standard error somewhat greater than in the primary 

analysis, and p = 0.028.  Therefore, when interpreted as an MNAR sensitivity analysis 

this result supports robustness of the primary analysis.  When interpreted in the 

effectiveness context, the CR result suggested that 83% (-2.20 / -2.64) of the effect if 

taken as directed (efficacy) was maintained as actually taken in this study.   

 

Table 4.  Results from reference-based multiple imputation  

____________________________________________________________________ 

 

  LSMEAN changes Endpoint Standard  

Method       Drug Placebo  Contrast          Error  P value 

 

J2R              -6.28 -4.30  -1.98       1.01         0.051 

CR                 -6.46 -4.26  -2.20       0.99         0.028 

CIR             -6.52 -4.25  -2.28       0.99         0.022 

____________________________________________________________________ 

 

In addition, progressive stress tests were implemented via MI with delta-adjustment.  

Two forms of adjustment were applied by either delta-adjusting only the first visit with 
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missing data or by adjusting all visits with missing data.  In both cases imputations were 

performed visit-by-visit, with patients’ delta-adjusted imputed data contributing to 

imputed values at subsequent visits.   The ―tipping point‖ was identified by repeating the 

imputation process with progressively larger deltas.  Analyses were implemented as 

previously described for other MI based approaches.    

 

Delta-adjustment stress test results are summarized in Table 6.  When applying the delta 

adjustment to only the first missing visit the delta had to be a worsening of 4 points on 

the HAMD17 in order to overturn the primary result.  When applying the delta adjustment 

to all visits the magnitude of the adjustment had to be a worsening of 2 points on the 

HAMD17 in order to overturn the primary result. 

 

Table 5.  Results from delta-adjustment multiple imputation  

____________________________________________________________________ 

 

Value of        Endpoint 

Delta Adjustment Adjustment method   Contrast P value 

 

0   First missing visit only  -2.74  .008 

1.0   First missing visit only  -2.56  .013 

2.0   First missing visit only  -2.38  .022 

3.0   First missing visit only  -2.20  .035 

4.0   First missing visit only  -2.02  .055 

 

0   All visits   -2.74  .008 

1.0   All visits   -2.38  .021 

2.0   All visits   -2.02  .054 

____________________________________________________________________ 

 

Results from sensitivity analyses are summarized in Table 6.   Across the various model-

based sensitivity analyses the advantages of drug over placebo at endpoint were generally 

close to or greater than the primary result.   Therefore, the model-based sensitivity 

analyses support the robustness of the primary analysis to departures from MAR.      

 

With controlled imputations, previous experience suggested the CR approach provided a 

clearly conservative, but plausible, estimate of the treatment effect for an efficacy 

hypothesis and a reasonable assessment of effectiveness.  The advantage of drug over 

placebo from CR was approximately 83% of the magnitude of the primary result, with 

statistical significance preserved.   

 

Preservation of statistical significance need not be a requirement of sensitivity analyses 

when assessing robustness of the primary result.  However, in those cases where 

significance is preserved from a clearly conservative analysis this may be sufficient to 

declare the primary result robust to departures from MAR.   

 

In the delta-adjustment stress testing analyses, deltas required to overturn the primary 

result ranged from 2 to 4 points on the HAMD17 depending on the specific method.  

Given a residual variance of 36 (see Table 3), the residual standard deviation was 6.0.  

Therefore, the tipping points correspond to 1/3 and 2/3 of the residual standard deviation.     
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Table 6.  Summary of missing data sensitivity analysis results 

____________________________________________________________________ 

           Endpoint Standard        

Method
1
      Contrast Error  P value 

  

 

Model-based approaches 

Likelihood (primary analysis)   -2.64  1.01  0.010 

MI with inclusive model   -2.54   1.12         0.024 

wGEE with inclusive model   -3.03  1.09         0.006  

SM      -2.48  1.09  0.023 

PMM (NCMV)    -2.67  0.99  0.007 

  

SPM      -3.03  1.03  0.004 

  

 

 

Controlled imputation approaches 

CR      -2.20  0.99  0.028 

       

Delta adjustment first missing visit only significance lost when delta ≥ 4.0 

Delta adjustment all visits significance lost when delta ≥ 2.0 

 

1. SM = selection model; PMM = pattern mixture model, SPM = shared parameter model  

____________________________________________________________________ 

 

 

Discussion 

 

Recent research has produced useful guidance and recommendations regarding the 

prevention and treatment of missing data.  The intent of this paper has been to provide a 

practical guide and tools for applying the recent guidance.  The programs and example 

data used in this paper are freely available at www.missingdata.uk.org.  The web site also 

provides additional details on the programs and how to use them.   

 

 

Approaches and ideas presented in this paper are not intended as specific prescriptions 

for all trials.  As the clinical contexts vary between studies, so too should the trial design 

and conduct options to reduce missing data, along with the specific form of the sensitivity 

analyses.  Despite the idiosyncrasies of specific situations, several general points are 

clear.  Most importantly, trials should be designed and conducted to maximize the 

proportion of patients that adhere to the study prescribed treatments.  Given that missing 

data cannot be eliminated, it is also important to clearly state objectives and estimands, 

and to pre-specify the primary analysis and its assumptions, along with sensitivity 

analyses that are based on plausible assumptions.      

 

Some argue that follow-up data collected after discontinuation of the initially randomized 

study drug and / or initiation of rescue medication should usually be included in the 

primary analysis (NRC, 2010).  Others point to a more nuanced usage wherein follow-up 
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data are often part of the primary estimand in outcome trials, but not in symptomatic 

trials (O’Neill and Temple, 2012).  

 

In many cases both efficacy and effectiveness at the planned endpoint of the trial will be 

of interest because it is important to know what happens when a drug is taken as directed 

(efficacy) and to know what happens when the drug is taken as in actual practice 

(effectiveness).  The choice between efficacy and effectiveness as the primary estimand 

should be influenced by whether the trial design and conduct is more consistent with 

rigorously controlled efficacy assessments or more naturalistic effectiveness assessments.  

Whether or not follow-up data should be collected and / or included in the primary 

estimand can be considered on a case-by-case basis.  However, given the confounding 

influences of rescue medications, the role for follow-up data in the analysis of 

symptomatic treatment trials would usually be secondary.    

 

A primary analysis based on MAR is often reasonable.  Likelihood-based methods, MI, 

and wGEE are all useful MAR approaches whose specific attributes can be considered 

when tailoring a primary analysis to specific situations.  With an MAR-based primary 

analysis a focal point of sensitivity assessments is the impact of departures from MAR on 

estimates of the primary treatment contrast.  To this end, the model-based family of 

MNAR methods such as selection models, pattern-mixture models and shared-parameter 

models can be considered.  Prior experience can guide analytic decisions such as 

plausible ranges of input values for selection models, appropriate linkages between 

analysis and dropout models in the shared parameter setting, or appropriate identifying 

restrictions for pattern-mixture models.   

 

Controlled-imputation methods can be especially useful in constructing analyses to assess 

specific departures from MAR and for assessing effectiveness because the assumptions 

are transparent.  If a plausibly conservative controlled imputation analysis agrees 

sufficiently with the primary result, as it did in the example data, the primary result can 

be declared robust to departures from MAR.  Alternatively, a tipping point (progressive 

stress-testing) format can be used to assess how severe departures from MAR must be in 

order to overturn conclusions from the primary analysis.  If, as in the example data, 

severe departures from MAR are required to negate the primary result, the primary result 

can be declared robust to departures from MAR.  

 

In addition to the methods illustrated in this paper, macros are also available at 

www.missingdata.org.uk to conduct influence and residual diagnostics, and other 

descriptive analyses.  Future efforts of the DIASWG on missing data will include making 

available semi- and non-parametric versions of relevant methods, doubly robust methods, 

sensitivity analyses for categorical data, and applying sensitivity analyses retrospectively 

to large data pools in order to gain experience and provide perspective.    

 

 

References 

 

Carpenter JR, Kenward MG. Missing data in randomised controlled trials – a practical 

guide. (2007). Available at http://missingdata.lshtm.ac.uk/downloads/rm04_jh17_mk.pdf 

(accessed 23 January 2012). 

 

Biopharmaceutical Section – JSM 2012

347

http://www.missingdata.org.uk/
http://missingdata.lshtm.ac.uk/downloads/rm04_jh17_mk.pdf


14 

 

Carpenter J, Roger J, and Kenward M.  Analysis of Longitudinal Trials with Missing 

Data: A Framework for Relevant, Accessible Assumptions, and Inference via Multiple 

Imputation.  2011 (Submitted).  

 

Daniel R, Kenward M.  A method for increasing the robustness of multiple imputation, 

Computational Statistics and Data Analysis. (2012); 56, 1624-43 

 

Committee for Medicinal Products for Human Use (CHMP).  Guideline on missing data 

in confirmatory clinical trials. 2010. EMA/CPMP/EWP/1776/99 Rev. 1 

 

Goldstein DJ, Lu Y, Detke MJ, Wiltse C, Mallinckrodt C, Demitrack MA: Duloxetine in 

the treatment of depression: a double-blind placebo-controlled comparison with 

paroxetine. J Clin Psychopharmacol 2004;24: 389-399. 

 

Hamilton M: A rating scale for depression. J Neurol Neurosurg Psychiatry 1960, 23: 

56-61. 

 

Khan A, Schwartz K, Redding N, Kolts R, Brown WA. Psychiatric Diagnosis and 

Clinical Trial Completion Rates: Analysis of the FDA SBA Reports.  

Neuropsychopharmacology (2007) 32, 2422–2430 

 

Kim Y.  Missing Data Handling in Chronic Pain Trials.  Journal of Biopharmaceutical 

Statistics.  2011; 21: 2, 311 — 325 

 

Lane PW. Handling drop-out in longitudinal clinical trials: a comparison of the LOCF 

and MMRM approaches.  Pharm Stat. 2008; 7:93-106. 

 

Little, R.J.A., and Rubin, D.B. (2002). Statistical Analysis with Missing Data, 2nd edition.  

New York: Wiley. 

 

Little R and Yau L, 1996, Intention-to-treat analysis for longitudinal studies with drop-

outs, Biometrics, 1324-1333 

 

Mallinckrodt CH, Raskin J, Wohlreich MM,
 
Watkin JG, Detke MJ,  The efficacy of 

duloxetine:  A comprehensive summary of results from MMRM and LOCF in eight 

clinical trials.   BMC Psychiatry.  2004; 4:26.  

 

Mallinckrodt CH, Lane PW, Schnell D, Peng Y, and Mancuso JP.  Recommendations for 

the Primary Analysis of Continuous Endpoints in Longitudinal Clinical Trials.  Drug 

Information Journal. 2008; 42:305-319. 

 

Molenberghs G, Thijs H, Jansen I, Beunckens C, Kenward MG, Mallinckrodt CH, 

Carroll RJ. Analyzing incomplete longitudinal clinical trial data.  Biostatistics.  2004; 

5:445-464.   

 

Molenberghs G, Kenward MG. (2007), Missing Data in Clinical Studies. Chichester: 

John Wiley & Sons.   

 

Biopharmaceutical Section – JSM 2012

348



15 

 

National Research Council (2010).  The prevention and Treatment of Missing Data in 

Clinical Trials. Panel on Handling Missing Data in Clinical Trials. Committee on 

National Statistics, Division of Behavioral and Social Sciences and Education. 

Washington, DC: The National Academies Press. 

 

O’Neill RT and Temple R.  (2012).  The Prevention and Treatment of issing Data 

in Clinical Trials: An FDA Perspective on the Importance of Dealing With It.  Clinical 

Pharmacology and Therapeutics.  doi:10.1038/clpt.2011.340 

 

Permutt T and Pinheiro J. (2009).  Dealing with the missing data challenge in clinical 

trials.  Drug Information Journal.  43(, 403-408.  

 

Ratitch B, O’Kelly M. Implementation of Pattern-Mixture Models Using Standard 

SAS/STAT Procedures. PharmaSUG 2011. Available at 

http://pharmasug.org/proceedings/2011/SP/PharmaSUG-2011-SP04.pdf (accessed 

October 4, 2011) 

 

Roger J, Ritchie S, Donovan C, Carpenter J.  Sensitivity Analysis for Longitudinal 

Studies with Withdrawal. PSI Conference, May 2008. Abstract at 

http://www.psiweb.org/docs/2008finalprogramme.pdf (accessed 23 January 2012) 

 

Rubin DB.  Multiple Imputation for Nonresponse in Surveys. Wiley: New York, 1987. 

 

SAS Institute Inc. 2008. SAS/STAT® 9.2.  User’s Guide. Cary, NC: SAS Institute Inc. 

 

Siddiqui, O, Hung, H.M., O’Neill, R.O.  MMRM vs. LOCF: A Comprehensive 

Comparison Based on Simulation Study and 25 NDA Datasets.  J. Biopharmaceutical 

Statistics, 19(2), 227-246. 

 

Teshome B, Lipkovich I, Molenberghs G, Mallinckrodt CH.  Placebo Multiple 

Imputation: A new approach to sensitivity analyses for incomplete longitudinal clinical 

trial data.  Submitted.  

 

Verbeke G, Molenberghs G. (2000).   Linear Mixed Models for Longitudinal Data. 

 New York: Springer. 

Biopharmaceutical Section – JSM 2012

349


