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Abstract
Modern complex engineering systems often present the analyst with a mix of data types that can be
used for reliability prediction: system test results, lifetime data from unit tests of components, and
subsystems data, all of which may have predictive value for the system lifetime. We present a hier-
archical nonparametric framework, using Dirichlet processes, in which time-to-event distributions
may be estimated from sample data or derived based on physical failure mechanisms. By applying a
Bayesian methodology, the framework can incorporate prior information, including expert opinion.
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1. Introduction

Over time the complexity of the systems we design and build has expanded at an expo-
nential rate; traditional techniques for understanding smaller systems are often inadequate
for systems of a much larger scale. Modern complex systems have many components, with
varying amounts of interdependence, and they are significantly affected by boundary condi-
tions (interfaces to other systems and the general environment); this makes them difficult to
understand and manage. Data acquired by observing complex systems are heterogeneous,
coming from various forms of test as well as operational monitoring, acquired from differ-
ent levels (component, subsystem, system), and incomplete in various ways. The challenge
we face is to integrate this heterogeneous data to provide quantitative predictions, with
uncertainty estimates, to aid decision-making.

Analysis of complex systems is facilitated by the fact that they are typically decompos-
able or “nearly decomposable”: they can be broken down into smaller units (subsystems),
which in turn can be decomposed into components; i.e., they are structured in a multilevel
hierarchy. This allows different levels to be treated separately via hierarchical modeling,
which facilitates intellectual comprehension and enables “divide and conquer” strategies
for computational tractability.

Various types of decomposition may be used:
• Based on physical structure such as series or parallel units (traditional engineering

block diagrams)
• Based on event logic, e.g., fault trees or event trees
• Based on system states and stochastic transitions between states, e.g., Markov or

semi-Markov processes.
In this paper we focus on the first two strategies; see Collins and Huzurbazar (2011) for
more information on state-space methods. See Johnson et al. (2003), Graves et al. (2010)
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Figure 1: Hierarchical decomposition of an example four-component system.

and Reese et al. (2011) for additional information and general references on hierarchical
reliability analysis.

The goal of this paper is to develop reliability estimates for complex systems, including
estimates of uncertainty, using component, subsystem, and system data. We want to use all
available data types, which may include subjective data such as expert opinion as well as
data collected from various formal tests. This goal has led us to develop the hierarchical
Bayesian methodology we present here.

The remainder of the paper is organized as follows: Section 2 presents background in-
formation on hierarchical decomposition, two key results in distribution theory, and brief
reviews of Bayesian analysis and the Dirichlet process. In Section 3 we present a hierarchi-
cal nonparametric Bayesian framework for analyzing the kind of heterogeneous data just
described. Section 4 illustrates the use of the framework in a real application, estimation
of the reliability of a remotely piloted aircraft (RPA), and we conclude with a summary in
Section 5.

2. Background

We use the following definitions in this paper. A system is a group of components that
interact to function as a whole; a component is a part of a larger whole; a subsystem is
component composed of interacting subcomponents; the term unit may refer to a system,
subsystem, or component.

2.1 Hierarchical Decomposition for Reliability Analysis

Reliability data for complex systems such as aircraft typically comes from a variety of
sources. Full system tests are often expensive and difficult to perform; unit tests are usu-
ally done for some components and subsystems. If physical mechanisms for failure are
well-understood, we may have have computer simulation results based on scientific mod-
els. Expert judgment from scientists and engineers, based on experience with this or similar
systems, can also be valuable. Data types are heterogeneous: testing may provide binary
pass/fail information, lifetime (time to failure) data, or degradation measurements for fail-
ure mechanisms such as corrosion and fatigue cracking. Data will have differing levels of
uncertainty, depending on the source and quantity of the data.

Figure 1 is a notional view of a system composed of two subsystems, each of which
has two components. The components at the lowest level of the hierarchy may have sub-
components, but for practical reasons (e.g., we have no data on the subcomponents, or the
component is a sealed unit) we may not wish to carry the decomposition any further. The
varying shapes in Figure 2 represent the fact that we have data with different characteristics

Section on Physical and Engineering Sciences – JSM 2012

2221



Figure 2: Heterogeneous data for the system depicted in Figure 1

for each element in the system decomposition. We wish to synthesize all this data into a
reliability prediction for the whole system, possibly weighting some data more than others
based on our confidence in it. Our confidence is measured on factors such as how the data
were collected, the accuracy of the model, and possibly many others.

2.2 Distribution of Maxima and Minima

The following results are standard for calculating the reliability of components in series or
parallel. We state these in terms of cumulative distribution functions (CDFs): if X is the
random variable representing time to failure, its CDF is FX(x) = P (X ≤ x); its reliability
function is RX(x) = 1− FX(x) = P (X > x).

The failure time of a system with two independent components A and B in parallel is
the maximum of the component failure times; if the system failure time random variable
is X , and the components are independent with failure times XA and XB , we have X =
max(XA, XB) and

P (X ≤ x) = P (XA ≤ x ∩XB ≤ x) = P (XA ≤ x)P (XB ≤ x).

If the corresponding CDFs are FA and FB , then the CDF for system failure time is

P (X ≤ x) = FX(x) = FA(x)FB(x). (1)

The failure time of a system with two components A and B in series is the minimum
of the component failure times. With the same notation as above, using a basic formula of
probability we have X = min(XA, XB) and

P (X ≤ x) = P (XA ≤ x ∪XB ≤ x)
= P (XA ≤ x) + P (XB ≤ x)− P (XA ≤ x ∩XB ≤ x).

Thus the CDF for system failure time of the series system is

P (X ≤ x) = FX(x) = FA(x) + FB(x)− FA(x)FB(x). (2)

A classical way to view a series system is to use reliability functions. This provides a
simple approach when dealing with many components. We have for independent random
variables XA and XB ,

P (X > x) = RX(x) = RA(x)RB(x). (3)
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2.3 Bayesian Analysis

The Bayesian paradigm for statistical inference is well known; here we briefly review the
basic ideas and summarize the concepts of nonparametric Bayesian analysis. For a general
introduction to Bayesian ideas and methods, see Christensen et al. (2010); for an in-depth
study in Bayesian nonparametrics see Ghosh and Ramamoorthi (2003).

Whereas frequentists assume that distribution parameters are fixed, but unknown, quan-
tities to be estimated, in the Bayesian framework parameters are treated as random variables
with probability distributions. For example, if an exponential model X ∼ exp(λ) is of in-
terest, we begin by assigning a prior distribution p(λ) which reflects an initial belief or state
of knowledge about the parameter λ. After collecting data x = {x1, x2, . . . , xn}, where

X1, X2, . . . , Xn | λ
iid∼ exp(λ)

we update our belief about λ to obtain a posterior distribution, using Bayes’ theorem:

p(λ|x) = p(x|λ)p(λ)∫
p(x|λ)p(λ)dλ

. (4)

Though parameters are treated as random, Bayesian methods normally treat the dis-
tribution model generating the data, p(x|λ), as fixed up to the choice of λ. In Bayesian
nonparametrics this distribution is itself treated as a random quantity drawn from some
function space, e.g., the space of all continuous distribution functions. The implementation
of Bayes’ theorem now requires not just a prior distribution over a univariate or multivari-
ate parameter space, but a distribution over a space of distributions. In other words, such a
distribution D can be sampled to provide CDFs characterizing a univariate random value.
For example, D can be used to generate sample CDFs Fi for failure time distributions in
a reliability analysis. Just as in conventional Bayesian analysis, the prior is updated, using
observed failure times, to yield a posterior distribution D(F |x) over failure time distri-
butions. A commonly used probability model for distribution functions is the Dirichlet
Process, which is described in the next section.

2.4 Dirichlet Processes

The Dirichlet process (DP), originally introduced in Ferguson (1973), is one type of non-
parametric Bayesian model. We provide a short introduction to DPs, and explain how they
can be used in a reliability context to obtain an estimate of the unknown reliability function,
R(t), and the associated unknown CDF F (t) = 1−R(t).

DPs are defined by a mean (also called the base measure), which we call F0(t), and by a
precision parameter α ≥ 0, which controls the amount of variation of the DP around F0(t).
The Dirichlet process can be described as a distribution for CDFs. We denote the DP with
precision α and base measure F0(t) as DP(α, F0(t)), or DP(α, F0). The Bayes estimate for
F (t) ∼ DP(α, F0) (with a quadratic loss function) is just E[F (t)] = F0(t); however, the
DP process can also be used to quantify the uncertainty, centered around the point estimate.
At any point t the DP(α, F0(t)) requires that F (t) ∼ Beta(αF0(t), α(1 − F0(t))), from
which the pointwise uncertainty of F (t) is easily calculated. Figure 3 illustrates what a DP
looks like: the mean is a Weibull(1.8, 30) CDF, and the precision is α = 50. The black
line represents the beta distribution of F (t) at some particular t, hence the “Beta domain”
dimension in the plot is restricted to the interval [0, 1], as we would expect for a CDF. The
red line in the plot shows the mean of the DP. The areas that are more elevated in the plot
represent areas more likely to contain the unknown CDF F (t).
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Figure 3: An example Dirichlet process

DPs can be used in a variety of ways, one of which is as a Bayesian prior for an un-
known/random distribution; these are called Dirichlet process priors (DPPs). DPPs can be
considered conjugate, such as the beta distribution is the conjugate prior for a binomial
model; i.e., the posterior is a probability model in the same family as the prior. After col-
lecting data and updating the DPP, DP(α, F0(t)) which reflects our prior belief about F (t),
the posterior is also a DP (this is only true for uncensored data).

To make the DP concepts more concrete, we show how a DP can be used to estimate a
CDF given some data. Consider the data

X1, X2, . . . , Xn |F
iid∼ F where F ∼ DP(α, F0).

The prior information is contained in F0 and α. The posterior of F (or the distribution of
F |X) is also a DP. We define

F̂ (t) =

∑n
i=1 I(Xi≤t)

n
,

which is the empirical CDF based on the data. Then the posterior DP is

F | X1, X2, . . . , Xn ∼ DP

(
α+ n,

αF0 + nF̂

α+ n

)
. (5)

Clearly, if α = 0 then we have no prior information and F0 has no effect on the posterior.
An example of the DP posterior is shown in Figure 4. In this Figure one can see a discon-
tinuity in the mean at each observation, corresponding to the jump in the empirical CDF at
that point.

It is worthwhile to point out a few things about the posterior. The first is that the
precision is increased by n, which indicates that we can roughly interpret α as the number
of observations we feel the prior should account for. This is an appealing feature that allows
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Figure 4: An example Dirichlet process posterior

us to understand the effect of the prior on the posterior. The next thing we observe is that
the base measure is a mixture of the prior base measure and the empirical CDF. This makes
sense intuitively, and helps conceptualize how the DP posterior is derived. The last thing
we point out is that the DP posterior’s base measure has discontinuities. Although this is
not necessarily a desirable characteristic, it does not detract from our original goal.

In a reliability context, using DPs has several benefits. The DP definition allows a
modeler to specify the weight and shape of the prior independently; in other words, unlike
in Bayesian parametric models, the shape of the prior F0 has no effect on the posterior
precision. Therefore there is no need to perform a traditional Bayesian sensitivity analysis,
because we know the effect the prior will have on the posterior. Another benefit of DPs is
that if we have no prior information, α can be set to zero; this is truly an uninformative prior.
If this is the case, the mean of the DP posterior is just the empirical CDF, which is a very
logical result. Additionally, no effort is required to identify an adequate parametric model;
parametric modeling assumptions may not be challenging when we have one distribution,
but later in the paper we allow for a very large number of components, each of which may
have a unique time-to-failure distribution. To properly fit a distribution to each component’s
failure time would most likely be time prohibitive. The last benefit we highlight is the
computational ease with which DPs are handled; because of the conjugate property, typical
computationally complex Bayesian methods such as Markov chain Monte Carlo (MCMC)
are not required.

In this section we have briefly covered the nature of the DP and some of its properties
that will be useful in the following sections. For a more in-depth treatment of Dirichlet
processes, see Hjort et al. (2010) or Ghosh and Ramamoorthi (2003).
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3. A Nonparametric Bayesian Framework for Hierarchical Reliability Data

Having provided some background on DPs, we now use them as building blocks in a hier-
archical structure to obtain a reliability estimate for a complete system.

In concept the method is quite simple. For each component of a subsystem we construct
a DP posterior and keep only the posterior base measure. Then using the structure of the
subsystem and the formulas presented in Section 2.2, we find the CDF of the combined
components for that subsystem. We then construct a new DPP for the subsystem using the
combined component CDF as the base measure, and choose a new precision that represents
the amount of data this prior information should account for. Finally, we update this DPP
with any subsystem data we have. This produces another DP posterior that is an estimate of
F (t) for the subsystem time-to-failure. This can be iterated through any number of levels
in a system’s hierarchy until we attain the DP posterior for the full system we are modeling.

One possible criticism of this method is that the precision for the component DPs is lost
when constructing the subsystem DPP. At first this troubled us, but the more we thought
about this effect, the more it actually became appealing. The primary reason is that the
observed subsystem data is usually the “gold standard”, and we are only supplementing it
with a prior based on component data. This assignment of α can be viewed as the weight
of the DPP, that is, the amount of effect the prior should have on the posterior. Therefore it
makes sense to allow the modeler to choose the weight that component’s information will
have in the posterior; if the amount of component data is large and the amount of subsystem
data is small, the component data will not inadvertently overwhelm the subsystem data.

Ideally the base measure of the DPP from the components and the empirical CDF
(ECDF) of the subsystem data will have similar shapes. If not, this could indicate one
or both of two problems. One possibility is that the components are not functioning in-
dependently, in a statistical sense. Hence, there is a visible difference between the base
measure of the DPP and the ECDF of the subsystem data. The other possible problem
is that there is a missing component in the subsystem model. For example, if we have a
two-component system and have data for each of the two components, when we connect
the components the coupling mechanism (e.g., a cable or soldered connection) needs to be
taken into account. These are the two main assumptions that need to be checked for this
model to hold. If the base measure of the DPP from the components and the ECDF roughly
agree, we should expect the model to be reasonable approximation of reality.

From an engineering perspective we would expect a shorter mean time to failure (MTTF)
under the subsystem estimate than in the DPP of the components. This occurs in most sys-
tems because components do interact and new failure modes appear when they are com-
bined. However, if the differences are negligible we can proceed using the model we have
developed.

To summarize, these are the steps in this modeling technique:
1. For each component, select a DP prior, with base measure and precision (weight)
2. Collect data for each component
3. Update the priors with the data to get component DP posteriors
4. Use the base measures of the component DP posteriors to estimate the base measure

for the subsystem prior, using formulas (1) and (2)
5. Construct a DP prior for each subsystem, using the base measure from the previous

step and a precision that is chosen to represent the weight the component data should
have on the subsystem posterior

6. Update the subsystem DP prior with observed subsystem data to obtain a DP poste-
rior
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Figure 5: Mission profile and propulsion subsystem use for a small hybrid-electric re-
motely piloted aircraft

7. Iterate this process through all the levels of the system, treating subsystems as com-
ponents

There are several reasons why this modeling approach is effective. First, component
data should not determine the influence the prior has on a subsystem posterior. In this
approach the modeler can intelligently devalue the component data so that it does not over-
power the subsystem data. In addition, there are relatively few assumptions built into the
model. Another advantage is, the DP posterior for the full system provides an estimate of
the uncertainty in the result.

4. Application

To illustrate the application of this framework to a real-world problem, we model the
reliability of the propulsion system in a small hybrid-electric remotely piloted aircraft
(SHERPA). SHERPA is a prototype RPA being developed at the Air Force Institute of
Technology (AFIT) for a mission profile involving takeoff, ingress to a target area, loiter-
ing over the target for surveillance, egress, and landing (Ausserer (2012)). RPAs powered
by gasoline engines have a high power to weight ratio and are capable of long missions,
but are noisy and thus less stealthy than desired; electrically powered RPAs have a smaller
acoustic signature, but battery weight is a challenge if electrical propulsion is to be used
over a complete mission. A hybrid RPA using both systems provides a solution that com-
bines enough power to complete the mission, and the ability to perform the essential part
of the mission (loitering) solely on electric power.

Figure 5 shows a generic mission profile for SHERPA, along with the propulsion used.
The gasoline engine (G) alone is used for ingress, egress, and landing; the electric motor is
used while loitering over the target; and both are used (for maximum power) during takeoff
and climb to cruising altitude. While cruising, the gas engine recharges the battery.

Table 1 lists the components in a high-level decomposition of the propulsion system.
The interrelationship of components is shown by the reliability block diagram in Figure
6. The three common components on the left are in series, since a failure of any one
results in loss of propulsion. The two parallel branches to the right indicate that propulsion
is functional if either the gas engine or electric motor is functional (the reliability goal we
consider is simply whether the aircraft can fly, though clearly its mission readiness would be
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Table 1: Component List for SHERPA Propulsion System

Electric Propulsion Gasoline Propulsion Common Parts
Motor Engine Propeller
Batteries Gas Delivery Drive shaft
Motor controller Gearing
Serpentine belt

Figure 6: The reliability block diagram of the propulsion system of the hybrid RPA.

compromised if only one propulsion mode were functional). Each parallel branch includes
the components for one propulsion mode in series.

The data we use are simulated to mimic the reliability of the components, subsystems,
and system. We are not able to use the actual data due to operational issues. We also ignore
at this point the fact that the actual data would be right censored, since testing typically
is terminated before all units have failed. The simulated data is uncensored, which is not
realistic in this setting. Our future research will enhance the framework to provide the
ability to handle right-censored data. One final assumption we make is that there is no
prior information for the components. This is the worst case scenario; it is straightforward
to incorporate prior information if it is available.

To model R(t) for the SHERPA propulsion system we start by organizing it into sub-
systems and components, as in Table 1 and Figure 6. (We are actually modeling F (t), the
time-to failure CDF, and using R(t) = 1 − F (t)). We have two subsystems composed of
components; once we obtain a DP posterior for both subsystems we treat them as compo-
nents along with the common components to obtain the DP prior for the system, which is
updated using system data to get the system DP posterior. Figure 7 displays the histograms
for each component, subsystem and system. (The x-axis is omitted to mask the lifetimes of
the parts.)

We demonstrate this process in detail with the electrical subsystem; Figure 8 shows the
flow of the modeling. First we assume no prior information is known for the Motor, MC
(motor controller), Bat (battery), and Belt (serpentine belt). Next a DP posterior (labeled
DP in Figure 8) is constructed for each of the four components. Then, the means of the DP
posteriors are used to calculate the base measure CDF for the whole electrical subsystem.
Since there are four components in series, Equation (3) finds the reliability function of
the minimum time to failure (from which we obtain the CDF). Using this minimum CDF,
we add a precision (weight) to construct the DPP for the electric propulsion subsystem.
There are 15 observations of the electric propulsion subsystem, therefore we choose the
DPP precison to be α = 0.75n = 11.25; this ensures the prior will not overwhelm the
posterior. However, other values of α could be appropriate depending on the application
and the modeler’s knowledge of the process. With the DPP constructed and the electric
subsystem data, we use equation (5) to obtain the DP posterior for the electric propulsion
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(a) Full System Data (b) Gasoline Subsystem Data (c) Electric Subsystem Data

(d) Drive Shaft Data (e) Gearing Data (f) Propeller Data

(g) Motor Data (h) Motor Controller Data (i) Battery Data

(j) Serpentine Belt Data (k) Engine Data (l) Gas Delivery Data

Figure 7: Histogram of System, Subsystems and Component Data
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Figure 8: Modeling flow for the electric propulsion subsystem.

(a) A comparison of the subsystem data and the
prior for the electrical propulsion subsystem

(b) The estimated reliability function of the
electrical propulsion subsystem, with 95%
pointwise credible bounds

Figure 9: Plots for the electrical propulsion subsystem

subsystem.
It is usually not reasonable to obtain an analytic expression for the posterior mean of the

DP. Therefore our method is to calculate these quantities on a discretized grid along the time
axis; the fineness of the grid can be chosen by the modeler, with an obvious computational
penalty as more points are chosen. Once these values are calculated, the posterior mean can
be displayed with the pointwise 95% credible bounds of the DP posterior. These credible
bounds are obtainable since the pointwise distribution of the DP is a beta distribution.
Figure 9a shows two darker curves: the red one is the Kaplan-Meier estimate of R(t) for
the electric subsystem data, and the black one is one minus the mean of the DPP of the
electric subsystem components. The lighter lines provide the 95% pointwise uncertainty
assocated with the these curves. If the assumptions of the model are approximately correct,
the two darker lines should be fairly similar, with some allowance for sample to sample
variation. Figure 9b show one minus the mean of the DP posterior with its 95% pointwise
credible bounds.

The remaining calculations are similar to those for the electrical subsystem. The prior
precisions are set at a conservative level with α = 0.75n, where n is the number of test
samples obtained for the subsystem or system. We show additional plots of one minus
the mean of the DPPs and the system/subsystem data to verify that the assumptions are
reasonable in Figures 10a and 10b. As with any model, ensuring the assumptions are
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(a) A comparison of the subsystem data and the
prior for the gasoline propulsion subsystem

(b) A comparison of the data and the prior for
the full propulsion system

(c) A comparison of the full system data and
the posterior of the full propulsion system

(d) The estimated reliability function of the
full propulsion subsystem, with 95% pointwise
credible bounds

Figure 10: Plots of various estimates of reliability functions

met are vital. Figures 9a, 10a, 10b show the priors (in black) versus the subsystem or
system test data (in red). If these are a fairly close match, we can proceed. Figure 10a is
clearly appropriate, however the other two do show some disagreement. Since the prior
accounts for 3/4 of the actual data we don’t expect these deviations to dramatically impact
the posterior. Since this disagreement is not too severe, we proceed on the basis that the
assumptions are met.

The final output of interest is in Figure 10d. This shows the estimate of the reliability
function of the full propulsion system of SHERPA with 95% pointwise credible bounds.
From this we can determine quantities such as the estimated probabilty of failure at a par-
ticular time, the estimated 90% mission capable rate, and other measures that may be of
interest to those who rely on this system. One additional result is shown in Figure 10c;
the reliability estimate of the data for the six full system tests (in red) is plotted with the
posterior result from our methodology. Clearly, using more data provides a better estimate,
both in the fidelity of the mean and reduced uncertainty, which is shown by the narrower
credible bounds.

5. Summary

In this paper we introduced a methodology that combines many levels of data from a com-
plex hierarchical system. We applied a Bayesian nonparametric approach, which reduces
the number of assumptions and provides a computationally concise solution. This method
also produces a reliability estimate with uncertainty quantification.

There is still work that needs to be done to make this a truly useful method. The
first major issue to be addressed is generalizing the model to incorporate randomly right
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censored data. Nearly all reliability data has censored observations, so a method that is
not able to handle it is not practically useful. The generalization of this model will likely
use the work of Blum and Susarla (1977), which shows that a DPP updated with randomly
right censored observations is a mixture of Dirichlet processes. With this information the
problem will become more complex computationally, but will still be based on the same
fundamental concepts. Additional work should also include the ability to set a prior on α,
the precision of the DPP.
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