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Abstract 

This is a discussion of four presentations made during the session on Joint Modeling at 
the Joint Statistics Meetings (Session 321, 31 July 2012): 

Learning and Information in Bayesian Joint Models for Longitudinal and Survival Data 
by Laura A. Hatfield, Harvard Medical School; James Hodges, University of 
Minnesota; Bradley P Carlin, University of Minnesota  

Comparative Assessment of Joint Versus Conventional Modeling of Longitudinal and 
Survival Endpoints: A Reanalysis of P3 Oncology Data by Mark Boye; Joseph 
Ibrahim, The University of North Carolina at Chapel Hill; Ming-Hui Chen, 
University of Connecticut; Ping Wang, Eli Lilly and Company; Wei Shen, Eli Lilly 
and Company; Danjie Zhang, University of Connecticut  

Joint Modeling of Longitudinal and Survival Data with Missing and Left-Censored Time-
Varying Covariates by Ryan May, The EMMES Corporation  

A Bayesian Joint Model for DAS28 Scores and Time-to-Dropout Data by Violeta 
Hennessey, Amgen, Inc.  
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1. Introduction 
Longitudinal trials observe subjects over a period of time until completion of a planned 
measurement schedule or withdrawal from the trial for reasons that may informative such 
as toxicity, cure, or lack of efficacy, or for reasons that may not be informative such as 
administrative withdrawals or termination of the trial before all subjects could complete 
their scheduled observations. Joint modeling methods combine the longitudinal 
measurements with information about withdrawals to draw valid conclusions about 
intervention effects. Simply ignoring the missing information is not a viable option. 
Bayesian methods usually form the basis for analyses because they provide a convenient 
way to incorporate random effects at various stages of the models. 

Joint modeling methods address either or both of two different questions, (1)“What is the 
effect of the intervention on the trajectory of measurements over time when withdrawals 
are considered?”, and (2) “What is the effect of a subject’s trajectory of measurements on 
the likelihood of that subject withdrawing from the trial for some reason?”   

The longitudinal observations to which joint modeling methods are applied typically are 
modeled as the sum of a fixed effect and a random error, for example, the j-th 
longitudinal observation on the i-th subject, made at time tij, can be written as 

ijiijijijiij ),X;t(f)t(YY 


 where );(g~ ii 


   (1) 

For any subject (fixed i), the expected value of Yij, ),X;T(f iii 


, depends on covariates 

ijX


observed for that subject until measurement occasion j, with subject-specific 
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parameter(s) i


 that are drawn from a distribution of potential values characterized by a 

parameter vector 


. The quantity ij represents measurement error. In addition to the 
longitudinal observations, there are (potential) event times Ti for each subject, with 
distribution 

);(k~    where),Z),,X;T(f;T(h~T iiiiiiiii 


   (2) 

The event time distribution for subject i could depend on the expected trajectory for that 

subject up to that time, ),X;T(f iii 


, or on the observed trajectory, {Yi(tij), j = 1, …, mi, 

mi = max(j | tij  Ti}. Either way, models (1) and (2) share parameters and covariates 
wholly or in part, which is why they are called joint models. Missing longitudinal values 
(values of Yij scheduled for observation after an event/withdrawal time Ti, but not 
actually observed) are assumed to be missing at random so that the actual or expected 
trajectory of observations is potentially predictive of withdrawal. 

2. Comments on Individual Presentations 
2.1 Hatfield et al  

This presentation considers how the choices of prior distribution affect inferences about 
the effects of longitudinal outcomes and survival information when these two quantities 
are jointly and separately distributed, assuming no informative censoring.  

If    z1i = mean of n longitudinal observations for subject i,  i = 1, …, N and 

   z2i = log survival time for subject i   

then the joint likelihoods are 

   z1i ~ N(11 + 12 trti + ui, 1
2/n),  ui ~ N(0,u

2) 

   z2i ~ N(21 + 22 trti + ui, 2
2/n 

where ui represents the shared random effect of subject i. The corresponding separate 
likelihoods are almost identical, except that   1. Normal prior distributions are assumed 

for ),( 12111 


 and ),( 22212 


:  j


 ~ N(0,jI2), j = 1, 2. The key message of 

the presentation is that the choice of joint or separate likelihoods and the choice of priors 
(values of 1 and 2) can affect the inferences. 

When applied to a set of data from a clinical trial, inferences about the longitudinal 
observations turned out not to depend on whether joint or separate or likelihoods were 
used. However, the inferences about the survival times did depend on the choice of 
model, as illustrated in Figure 1. 

On the other hand, when joint modeling was employed, the a priori assumption about the 
variance of the treatment effect for the survival time also affected the posterior variance 
of the treatment effect for the longitudinal observations, depending on the value of the 
linking parameter . Figure 2 illustrates the effect of different choices of prior 
distribution variance on the posterior variance of the treatment effect. The essential 
message here is that the benefit of joint modeling depends on the choice of prior 
distributions for the parameters. 
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Figure 1. Prediction intervals and 
expected survival propor-
tions on each treatment  

 

Figure 2. Variance of 12 as a function of the variance 
of 22. Top row corresponds to 2 = 1, bottom 
row corresponds to 2 = 2 (fixed) 

2.2 Boye et al   

This presentation addressed variations of longitudinal models like (1) with 

),X;T(f iii 


 = 0i + 1i tij +  zi,    i


 ~ N(, ) 

and survival models with hazard functions of the form 

i(tij) = exp{1(0i + zi) + 21iti
 + zi}  (Linear Random Effect = LRE) 

i(tij) = exp{(0i + zi + 1iti)
 + zi}   (Linear Trajectory = LT) 

and compared the gain in the fit of survival models from using longitudinal information 
by means of the change in Akaike Information Criterion (AIC), 

AIC = AICsurvival – AICsurvival | longitudinal 

The effect of misspecification of the longitudinal model on the findings of the survival 
analysis were evaluated by simulation: 

1. A set of longitudinal data were generated using a LRE model and also a QRE 
(Quadratic Random Effect) model 

2. A set of survival data were generated using a similar model (say method A) 

3. The resulting data were analyzed using another method (say method B) that assumes 
some other model for the longitudinal data 

4. The values of AIC were compared using the various longitudinal models. 

Figures 3 and 4 summarize the results of the comparisons of the models. Figure 3 
summarizes the AIC values when the survival data were constructed assuming that the 
longitudinal data were generated by a LRE model. The best results were obtained when 
the survival data were fit assuming the ‘correct’ longitudinal model. LRE2 is the same as 
the LRE model, except that a 2-piece exponential model was assumed for the baseline 
hazard function, and TS refers to a 2-stage model. Other reasonable longitudinal models 
gave reasonable results except for LOCF (Last Observation Carried Forward), which 
provided materially worse fits to the data. Figure 4 (note scale difference from Fig. 3) 
provides similar findings when the data were generated assuming a QRE longitudinal 
effects model. Assuming the longitudinal data were generated from an LRE model 
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produced results with the least AIC difference from the correct model. Assuming LOCF 
still gave the worst fits. 

Figure 3. AIC when LRE is 
correct longitudinal model 

Figure 4. AIC when QRE is correct 
longitudinal model.  

2.3 May   

This presentation was based on a simple mixed effect model linear in time for 
longitudinal data. A distinction was made between selection and shared parameter 
models. With selection models, which this presentation used, the survival model depends 
on fixed and random effects from the longitudinal model. With shared parameter models, 
the survival model depends on fixed effects or on random effects, but not both. 

The analysis problem considered was the prediction of survival (progression to AIDS) in 
an HIV-infected population based on trajectories of CD4 counts and viral load. The 
complicating factor was that 27% of VL (viral load) data were missing, and 17% were 
left-censored (below the limit of detectability). The presentation described an approach 
for incorporating these potentially informative data. 

For the censored VL findings, the analysis started with a normal prior distribution for VL, 
but truncated at the limit of detection (LD) so that the density was positive only if VL < 
LD. The missing data were assumed to be missing at random. 

A 2-stage strategy was used to fit the models: the longitudinal model was fit first, then 
the results were used to fit the survival model. The key findings were that observations 
with missing or left-censored covariates can strongly influence posterior estimates of the 
parameters of the survival distribution when joint models are used. As it turned out, the 
point estimates of the effect of the HAART (Highly Active Anti Retroviral Treatment) 
calendar period were not greatly affected, but the precision of the estimates was better 
when all of the data were included. 

2.4 Hennessey  

This presentation considered the presence of competing withdrawal risks (toxicity and 
lack of efficacy), a change point model for the longitudinal observations, and the use of 
latent variables to link the longitudinal and survival information. 

The longitudinal model assumed that the slope changed at Week 12, 

E(Yi(tij)) = 0i + 1itij     tij < 12 

0i + 1i12 + 2i(tij – 12) tij > 12 

mi ~ N(mi, m
2)  mi = 3m-2 + 3m-1z1i + 3mz2i  z1 = E  z2 = E+M  
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Vague priors were assumed for  and m
2. The event times (times to withdrawal for 

toxicity or lack of efficacy) TAE, TEff were assumed to have lognormal distributions with  

E(Txi) = xi = x1 + x2z1i + x3z2i + Wxi    x = AE or Eff 

W = linear function of longitudinal model parameters 

Figures 5 (before week 12) and 6 (after week 12) summarize the results from using joint 
and separate models; MTX, ETAN, and MTX+ETAN were the interventions used in the 
trial. There clearly was a substantial difference between the findings before and after 
week 12. However, the analysis results were essentially unaffected by the choice of 
model (joint or separate). 

 

 

 

 

 

 

Figure 5. Pre-Week 12 findings     Figure 6. Post-Week 12 findings 

 

 
Figure 5. Pre-Week 12 findings (open = 

joint, shaded = separate) 
Figure 6. Post-Week 12 findings (open = 

joint, shaded = separate) 

      

3. Summing Up 

The presentations addressed different aspects of the application of joint models. 
Generally, simple linear time trajectories were used, which the results of Boye et al and 
Hennessey suggest may be unrealistic. It is possible, but computationally expensive, to 
account for left censoring and missing data. It is not, however, clear, how much benefit 
actually would be realized in practice; this may depend on the circumstances and it would 
be useful to have some guidelines as to when the censored and missing data actually 
would be important when joint models are used. h 

With careful attention to a priori assumptions in the context of Bayesian analyses, joint 
modeling can provide increased insight, although how much may be very dependent on 
the actual situation. The precision of the posterior inferences depends on the models used 
for the longitudinal data 

As often is the case with evolving areas of development, there is considerable scope for 
future work. 
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