Abstract:
|
Fueled in part by recent applications in neuroscience, the multivariate Hawkes process has become a popular tool for modeling the network of interactions among high-dimensional point process data. While evaluating the uncertainty of the network estimates is critical in scientific applications, existing methodological and theoretical work has primarily addressed estimation. To bridge this gap, we develop a new statistical inference procedure for high-dimensional Hawkes processes. The key ingredient for the inference procedure is a new concentration inequality on the first- and second-order statistics for integrated stochastic processes, which summarize the entire history of the process. Combining recent results on martingale central limit theory with the new concentration inequality, we then characterize the convergence rate of the test statistics. The finite sample validity of the inferential tools is illustrated via extensive simulations and further applied to a neuron spike train data set.
Joing work with Xu Wang and Ali Shojaie.
|