Conference Program Home
  My Program

All Times EDT

Abstract Details

Activity Number: 368 - Recent Advances in Statistical Network Analysis with Applications
Type: Invited
Date/Time: Wednesday, August 10, 2022 : 8:30 AM to 10:20 AM
Sponsor: Section on Statistical Graphics
Abstract #320643
Title: Identifying the Latent Space Geometry of Network Models Through Analysis of Curvature
Author(s): Shane Lubold and Arun Chandrasekhar and Tyler McCormick*
Companies: University of Washington and Stanford University and University of Washington
Keywords: social network; geometry; latent space model; network; graph; manifold

Statistically modeling networks, across numerous disciplines and contexts, is fundamentally challenging because of (often high-order) dependence between connections. A common approach assigns each person in the graph to a position on a low-dimensional manifold. Distance between individuals in this (latent) space is inversely proportional to the likelihood of forming a connection. The choice of the latent geometry (the manifold class, dimension, and curvature) has consequential impacts on the substantive conclusions of the model. More positive curvature in the manifold, for example, encourages more and tighter communities; negative curvature induces repulsion among nodes. Currently, however, the choice of the latent geometry is an a priori modeling assumption and there is limited guidance about how to make these choices in a data-driven way. In this work, we present a method to consistently estimate the manifold type, dimension, and curvature from an empirically relevant class of latent spaces: simply connected, complete Riemannian manifolds of constant curvature.

Authors who are presenting talks have a * after their name.

Back to the full JSM 2022 program