Online Program Home
  My Program

All Times EDT

Abstract Details

Activity Number: 572 - Addressing Complications in Causal Inference
Type: Topic Contributed
Date/Time: Thursday, August 6, 2020 : 3:00 PM to 4:50 PM
Sponsor: Section on Statistics in Epidemiology
Abstract #314091
Title: Estimation of Natural Indirect Effects Robust to Unmeasured Confounding and Mediator Measurement Error
Author(s): Isabel Fulcher*
Companies: Harvard

The use of causal mediation analysis to evaluate the pathways by which an exposure affects an outcome is widespread in the social and biomedical sciences. Recent advances in this area have established formal conditions for identification and estimation of natural direct and indirect effects. However, these conditions typically involve stringent no unmeasured confounding assumptions and that the mediator has been measured without error. These assumptions may fail to hold in practice where mediation methods are often applied. The goal of this paper is two-fold. First, we show that the natural indirect effect can in fact be identified in the presence of unmeasured exposure-outcome confounding provided there is no additive interaction between the mediator and unmeasured confounder(s). Second, we introduce a new estimator of the natural indirect effect that is robust to both classical measurement error of the mediator and unmeasured confounding of both exposure-outcome and mediator-outcome relations under certain no interaction assumptions.

Authors who are presenting talks have a * after their name.

Back to the full JSM 2020 program