Online Program Home
  My Program

All Times EDT

Abstract Details

Activity Number: 518 - Modern Graphical Modeling of Complex Biomedical Systems
Type: Invited
Date/Time: Thursday, August 6, 2020 : 1:00 PM to 2:50 PM
Sponsor: ENAR
Abstract #309383
Title: Personalized Integrated Network Estimation
Author(s): Veera Baladandayuthapani* and Min Jin Ha and Francesco Stingo and Yang Ni
Companies: University of Michigan and UT MD Anderson Cancer Center and University of Florence and Texas A&M University
Keywords: Bayesian; Graphical Models; Genomics; Cancer; Precision Medicine; Networks

Personalized (patient-specific) approaches have recently emerged with a precision medicine paradigm that acknowledges the fact that molecular pathway structures and activity might be considerably different within and across patient populations. In the context of cancer, the functional cancer genome and proteome provide rich sources of information to identify patient-specific variations in signaling pathways and activities within and across tumors; however, current analytic methods lack the ability to exploit the diverse and multi-layered architecture of these complex biological networks. We consider the problem of modeling conditional independence structures in heterogenous data using Bayesian graphical regression techniques that allows patient-specific network estimation and inferences. We propose a novel specification of a conditional (in)dependence function of patient-specific covariates—which allows the structure of a directed graph to vary flexibly with the covariates; imposes sparsity in both edge and covariate selection; produces both subject-specific and predictive graphs; and is computationally tractable.

Authors who are presenting talks have a * after their name.

Back to the full JSM 2020 program