Online Program Home
My Program

Abstract Details

Activity Number: 340 - SPEED: Bayesian Methods, Part 1
Type: Contributed
Date/Time: Tuesday, July 30, 2019 : 10:30 AM to 12:20 PM
Sponsor: Section on Bayesian Statistical Science
Abstract #305367
Title: Bayesian Model Selection Using Mass-Nonlocal Prior
Author(s): Guiling Shi*
Companies: Amgen
Keywords: Bayesian variable selection; Estimation consistency; Median thresholding; Nonlocal prior; Spike and slab prior

The paper proposes a model selection technique by taking advantage of two distinctive approaches of Bayesian variable selection, namely spike and slab prior and nonlocal prior. Contrary to the local priors, nonlocal priors put zero mass at null values of the parameters. The proposed method uses posterior median as the parameter estimates and asymptotic consistency is established. The Bayesian implementation is proposed via Gibbs sampling. The full conditional distributions are derived. Extensive numerical study indicates superiority of the proposed procedure compared to its competitors. Most importantly, the procedure works well in low signal situation which is not the case in general.

Authors who are presenting talks have a * after their name.

Back to the full JSM 2019 program