Online Program Home
My Program

Abstract Details

Activity Number: 453 - Advances on the Analysis of Single-Cell Sequencing Data
Type: Topic Contributed
Date/Time: Wednesday, July 31, 2019 : 8:30 AM to 10:20 AM
Sponsor: Section on Statistics in Genomics and Genetics
Abstract #305264 Presentation
Title: Novel Methods for Analyzing Population-Based Single Cell Transcriptomic Data
Author(s): Wei Chen*
Companies: University of Pittsburgh
Keywords: scRNA-seq; Bayesian; Clustering

Single cell transcriptome sequencing (scRNA-Seq) has become a revolutionary tool to study cellular and molecular processes. The newly developed droplet-based technologies enable efficient parallel processing of thousands of single cells with direct counting of transcript copies using Unique Molecular Identifier (UMI). Despite the rapid technology advance, statistical methods and computational tools are still lacking for analyzing droplet-based single cell transcriptomic data. One important question in the analysis of scRNA-Seq data is to identify cell subtypes from heterogeneous tissues. In this talk, I will describe novel statistical methods for clustering population-based scRNA-seq data. Our approach explicitly models UMI count data, characterizes variations across different cell clusters via Dirichlet mixture prior, and poses a Bayesian hierarchical model for heterogeneity among multiple individuals. In both simulation studies and real data analysis, our proposed method outperforms existing methods with satisfactory clustering accuracy and stability, and thus will facilitate and accelerate novel biological discoveries.

Authors who are presenting talks have a * after their name.

Back to the full JSM 2019 program