Online Program Home
My Program

Abstract Details

Activity Number: 84 - Environmental Applications
Type: Contributed
Date/Time: Sunday, July 28, 2019 : 4:00 PM to 5:50 PM
Sponsor: Section on Statistics and the Environment
Abstract #305119 Presentation
Title: Hyperbolic Property of Earthquake Networks
Author(s): Karla Henricksen* and Ilya Zaliapin
Companies: and University of Nevada, Reno
Keywords: Large scale geometry; Gromov-hyperbolicity; earthquake networks

We examine the geometry of earthquakes in time-space-magnitude domain using the Gromov hyperbolic property of metric spaces. Gromov delta-hyperbolicity quantifies the curvature of a metric space via four point condition, which is a computationally convenient analog of the famous slim triangle property. We estimate the delta-hyperbolicity for the observed earthquakes in Southern California during 1981-2017. A set of earthquakes is quantified by the Baiesi-Paczuski proximity n that has been shown efficient in applied cluster analyses of natural and human-induced seismicity and acoustic emission experiments. The Gromov delta is estimated in the earthquake space (D,n) and in proximity graphs obtained by connecting pairs of earthquakes within proximity n0. All experiments result in the values of delta that are bounded from above and do not tend to increase as the examined region expands. This suggests that the earthquake field has hyperbolic geometry. We discuss the properties naturally associated with hyperbolicity in terms of the examined field. The results improve the understanding of dynamics of seismicity and further expand the list of natural processes characterized by the underlying hyperbolic geometry.

Authors who are presenting talks have a * after their name.

Back to the full JSM 2019 program