Online Program Home
My Program

Abstract Details

Activity Number: 78 - Nonparametric Modeling
Type: Contributed
Date/Time: Sunday, July 28, 2019 : 4:00 PM to 5:50 PM
Sponsor: Section on Nonparametric Statistics
Abstract #304250 Presentation
Title: A Smooth Block Bootstrap for Quantile Regression with Time Series
Author(s): Karl Gregory* and Daniel J. Nordman and Soumendra N Lahiri
Companies: University of South Carolina and Iowa State University and North Carolina State University
Keywords: bootstrap; quantile regression; time series; smoothing

Quantile regression allows for broad (conditional) characterizations of a response distribution beyond conditional means and is of increasing interest in economic and financial applications. Because quantile regression estimators have complex limiting distributions, several bootstrap methods for the independent data setting have been proposed, many of which involve smoothing steps to improve bootstrap approximations. Currently, no similar advances in smoothed bootstraps exist for quantile regression with dependent data. To this end, we establish a smooth tapered block bootstrap procedure for approximating the distribution of quantile regression estimators for time series. This bootstrap involves two rounds of smoothing in resampling: individual observations are resampled via kernel smoothing techniques and resampled data blocks are smoothed by tapering. The smooth bootstrap results in performance improvements over previous unsmoothed versions of the block bootstrap as well as normal approximations based on Powell's kernel variance estimator, which are common in application.

Authors who are presenting talks have a * after their name.

Back to the full JSM 2019 program