Online Program Home
My Program

Abstract Details

Activity Number: 642 - Advanced Statistical Methods for Large Data Sets
Type: Topic Contributed
Date/Time: Thursday, August 1, 2019 : 10:30 AM to 12:20 PM
Sponsor: Social Statistics Section
Abstract #302966 Presentation
Title: Entropy Learning for Dynamic Treatment Regimes
Author(s): Binyan Jiang*
Companies:
Keywords: Dynamic treatment regime; Entropy learning; Personalized medicine
Abstract:

Estimating optimal individualized treatment rules (ITRs) in single or multi-stage clinical trials is one key solution to personalized medicine and has received more and more attention in statistical community. Recent development suggests that using machine learning approaches can significantly improve the estimation over model-based methods. However, proper inference for the estimated ITRs has not been well established in machine learning based approaches. In this paper, we propose a entropy learning approach to estimate the optimal individualized treatment rules (ITRs). We obtain the asymptotic distributions for the estimated rules so further provide valid inference. The proposed approach is demonstrated to perform well in finite sample through extensive simulation studies. Finally, we analyze data from a multi-stage clinical trial for depression patients. Our results offer novel findings that are otherwise not revealed with existing approaches.


Authors who are presenting talks have a * after their name.

Back to the full JSM 2019 program