Online Program Home
My Program

Abstract Details

Activity Number: 645 - Bayesian Optimization
Type: Topic Contributed
Date/Time: Thursday, August 1, 2019 : 10:30 AM to 12:20 PM
Sponsor: Section on Bayesian Statistical Science
Abstract #301723 Presentation
Title: Bayesian Optimization for Robotics
Author(s): Roberto Calandra*
Companies: Facebook AI Research
Keywords: Bayesian optimization; Robotics

Designing and tuning controllers for real-world robots is a daunting task which typically requires significant expertise and lengthy experimentation. Bayesian optimization has shown to be a successful approach to automate these tasks with little human expertise required. In this talk, I will discuss the main challenges of robot learning, and how BO helps to overcome some of them. Using as showcase real-world applications where BO proved to be effective, I will also discuss how the challenges encountered in robotics applications can guide the development of new BO algorithms.

Authors who are presenting talks have a * after their name.

Back to the full JSM 2019 program