Abstract:
|
In this talk, we investigate large sample properties of model selection procedures in a nonparametric Bayesian framework when a closed form expression of the marginal likelihood function is not available or a local asymptotic quadratic approximation of the log-likelihood function does not exist. Under appropriate identifiability assumptions on the true model, we provide sufficient conditions for a Bayesian model selection procedure to be consistent and obey the Occam's razor phenomenon, i.e., the probability of selecting the ``smallest" model that contains the truth tends to one as the sample size goes to infinity. In order to show that a Bayesian model selection procedure selects the smallest model containing the truth, we impose a prior anti-concentration condition, requiring the prior mass assigned by large models to a neighborhood of the truth to be sufficiently small. In a more general setting where the strong model separation gap assumption may not hold, we introduce the notion of local Bayesian complexity and develop oracle inequalities for Bayesian model selection procedures.
|