Online Program Home
My Program

Abstract Details

Activity Number: 254 - Contributed Poster Presentations: Section on Bayesian Statistical Science
Type: Contributed
Date/Time: Monday, July 29, 2019 : 2:00 PM to 3:50 PM
Sponsor: Section on Bayesian Statistical Science
Abstract #300651
Title: Inverse Stable Prior for Rate, Inverse Scale, and Inverse Variance Parameters
Author(s): Dexter Cahoy* and Joseph Sedransk
Companies: University of Houston-Downtown and University of Maryland and Univ of Maryland
Keywords: inverse stable; M-Wright; rate

We consider a class of non-conjugate priors for a parameter (e.g., Poisson or gamma rate, inverse scale or precision of an inverse-gamma, inverse variance of a normal distribution) of an exponential subclass of discrete and continuous data distributions. The prior class is proper, nonzero at the origin (unlike the gamma and inverted beta priors with shape parameter less than one and Jeffreys prior for a Poisson rate), and is easy to generate random numbers from. The prior class also provides flexibility in capturing a wide array of prior beliefs (right-skewed and left-skewed) as modulated by a bounded parameter ??(0,1). The resulting posterior family in the single-parameter case can be expressed in closed-form and is proper, making calibration unnecessary. The mixing induced by the inverse stable family results to a marginal prior distribution in the form of a generalized Mittag-Leffler function, which covers a broad array of distributional shapes. We derive closed-form expressions of some properties like the moment generating function and moments. We propose algorithms to make Bayesian inference applicable in practice under these settings.

Authors who are presenting talks have a * after their name.

Back to the full JSM 2019 program