Online Program Home
My Program

Abstract Details

Activity Number: 146 - Scaling up Bayesian Inference for Massive Data Sets
Type: Invited
Date/Time: Monday, July 29, 2019 : 10:30 AM to 12:20 PM
Sponsor: IMS
Abstract #300256 Presentation
Title: Scalable Gaussian Process Inference with Finite-Data Mean and Variance Guarantees
Author(s): Tamara Broderick*
Companies: Massachusetts Institute of Technology
Keywords: approximate Bayesian inference; Gaussian processes
Abstract:

Gaussian processes (GPs) offer a flexible class of priors for nonparametric Bayesian regression, but popular GP posterior inference methods are typically prohibitively slow or lack desirable finite-data guarantees on quality. We develop an approach to scalable approximate GP regression with finite-data guarantees on the accuracy of pointwise posterior mean and variance estimates. Our main contribution is a novel objective for approximate inference in the nonparametric setting: the preconditioned Fisher (pF) divergence. We show that unlike the Kullback--Leibler divergence (used in variational inference), the pF divergence bounds the 2-Wasserstein distance, which in turn provides tight bounds the pointwise difference of the mean and variance functions. We demonstrate that, for sparse GP likelihood approximations, we can minimize the pF divergence efficiently. Our experiments show that optimizing the pF divergence has the same computational requirements as variational sparse GPs while providing comparable empirical performance--in addition to our novel finite-data quality guarantees.


Authors who are presenting talks have a * after their name.

Back to the full JSM 2019 program