Online Program Home
My Program

Abstract Details

Activity Number: 279 - Bioinformatics: Accomplishments and Challenges
Type: Invited
Date/Time: Tuesday, July 30, 2019 : 8:30 AM to 10:20 AM
Sponsor: Caucus for Women in Statistics
Abstract #300021 Presentation
Title: Optimal Permutation Recovery and Estimation of Bacterial Growth Dynamics
Author(s): Hongzhe Li*
Companies: University of Pennsylvania
Keywords: Microbiome; Metagenomics; Low rank approximation; High throughput sequencing; Growth dynamics

Accurately quantifying microbial growth dynamics for species without complete genome sequences is biologically important but computationally challenging in metagenomics. Here we present DEMIC, a new multi-sample algorithm based on contigs and coverage values, to infer relative distances of contigs from replication origin and to accurately estimate and compare bacterial growth rates between samples. We demonstrate robust performances of DEMIC for a wide range of sample sizes and assembly qualities using various synthetic and real data sets. We provide theoretical analysis to explain why DEMIC works in the framework of optimal permutation recovery.

Authors who are presenting talks have a * after their name.

Back to the full JSM 2019 program