Online Program Home
My Program

Abstract Details

Activity Number: 660 - Shrinkage Methods for Analyzing Complex Business Data
Type: Topic Contributed
Date/Time: Thursday, August 2, 2018 : 10:30 AM to 12:20 PM
Sponsor: Business and Economic Statistics Section
Abstract #329830 Presentation
Title: Fresh Ideas for Tuning Parameter Calibration
Author(s): Johannes Lederer*
Companies: Ruhr-University Bochum
Keywords: High-dimensional Statistics; Tuning Parameters

Regularization is essential for analyzing the large and complex data that are generated in economics, neuroscience, astronomy, and many other fields. However, Lasso, Ridge Regression, Graphical Lasso, and other regularized methods depend on tuning parameters that are difficult to calibrate both in theory and in practice. In this talk, we present two approaches to this challenge. The first approach is based on a testing scheme and is to date the only method that is equipped with both fast algorithms and optimal finite sample guarantees. The second approach is based on the minimization of an objective function that avoids tuning parameters altogether. We show that, quite surprisingly, this estimator can be computed efficiently despite it being highly non-convex.

Authors who are presenting talks have a * after their name.

Back to the full JSM 2018 program