Abstract:
|
GWAS have shown that pleiotropy is a common phenomenon that can potentially be exploited for enhanced detection of susceptibility loci. We propose heritability informed power optimization (HIPO) for conducting powerful pleiotropic analysis using summary statistics. We find optimal linear combinations of association coefficients across traits that are expected to maximize non-centrality parameter for the underlying test statistics, taking into account estimates of heritability, sample size variations and overlaps across the traits. Simulations show that the proposed method has correct type I error, robust to population stratification and leads to desired genome-wide enrichment of association signals. Application of the proposed method to publicly available data for three groups of genetically related traits, lipids, psychiatric diseases and social science traits increased the number of genome-wide significant loci by 12%, 200% and 50%, respectively, compared to those found by analysis of individual traits. Evidence of replication is present for many of these loci in subsequent larger studies for individual traits. HIPO can potentially be extended to high-dimensional phenotypes.
|