Online Program Home
  My Program

Abstract Details

Activity Number: 611 - Recent Advances in High-Dimensional Statistical Inference
Type: Topic Contributed
Date/Time: Thursday, August 3, 2017 : 8:30 AM to 10:20 AM
Sponsor: Section on Statistical Learning and Data Science
Abstract #324879 View Presentation
Title: Statistical Inference in Large Ising Graphical Models via Quadratic Programming
Author(s): Zhao Ren* and Cun-Hui Zhang and Harrison H. Zhou and Sai Li
Companies: University of Pittsburg and Rutgers University and Yale University and Rutgers University
Keywords: Ising Graphical Model ; Asymptotic Normality ; Data Swap ; Generalized Linear Models ; Sparsity
Abstract:

This paper investigates statistical inference of each edge for large Ising graphical models. Significant progress has been achieved recently in computing confidence intervals and p-values for each edge. The key role in these new inferential methods is played by a linear projection method to de-bias an initial regularized estimator. Major drawback of this approach in Ising models is that an extra sparsity assumption on the linear projection coefficient besides the sparsity of the graph itself is required, which cannot be checked in practice. In addition, efficiency is often compromised by the usage of sample splitting. In this paper, we propose a novel estimator of each edge via quadratic programming and show that our estimator is asymptotically normal without the above mentioned extra sparsity condition. Our proof applies a novel low dimensional maximum likelihood method for the de-bias procedure and a data swap technique to further avoid loss of efficiency. We further show that whenever the extra sparsity condition is satisfied, our estimator is adaptively efficient and achieves the Fisher information. Otherwise, we still provide a restricted Fisher information as a lower bound.


Authors who are presenting talks have a * after their name.

Back to the full JSM 2017 program

 
 
Copyright © American Statistical Association