Online Program Home
My Program

Abstract Details

Activity Number: 598
Type: Topic Contributed
Date/Time: Wednesday, August 3, 2016 : 2:00 PM to 3:50 PM
Sponsor: Section on Bayesian Statistical Science
Abstract #320493 View Presentation
Title: Quantile Graphical Models: An Approximate Bayesian Approach
Author(s): Nilabja Guha and Bani K. Mallick*
Companies: Texas A&M University and Texas A&M University
Keywords: variable selection ; mean field approximation ; quantile regression

Graphical models are ubiquitous tools to describe the interdependence between variables mea- sured simultaneously such as large-scale gene or protein expression data. Gaussian graphical models (GGMs) are well-established tools for probabilistic exploration of dependence structures using precision matrices and they are generated under a multivariate normal joint distribution. However, they suffer from several shortcomings since they are based on Gaussian and linear assumptions. In this article, we propose a Bayesian quantile based approach for sparse estimation of graphs and estimate the posterior graph by mean field approximations. We demonstrate that the resulting graph estimation is robust to outliers and applicable under general distributional assumptions. We use efficient variational Bayes approximations to scale the methods for large data sets. Our methods are applied to a novel cancer proteomics data dataset where-in multiple proteomic antibodies are simultaneously assessed on tumor samples using reverse-phase protein arrays (RPPA) technology.

Authors who are presenting talks have a * after their name.

Back to the full JSM 2016 program

Copyright © American Statistical Association