Online Program Home
My Program

Abstract Details

Activity Number: 475
Type: Invited
Date/Time: Wednesday, August 3, 2016 : 8:30 AM to 10:20 AM
Sponsor: Section on Statistics in Defense and National Security
Abstract #318002 View Presentation
Title: Steps Toward Reproducible Research
Author(s): Karl W. Broman*
Companies: University of Wisconsin - Madison
Keywords: reproducible research ; R ; software ; data analysis ; data science ; programming

A minimal standard for data analysis and other scientific computations is that they be reproducible: that the code and data are assembled in a way so that another group can re-create all of the results (e.g., the figures in a paper). Adopting a workflow that will make your results reproducible will ultimately make your life easier; if a problem (or question) arises somewhere down the line, it will be much easier to correct (or explain). But organizing analyses so that they are reproducible is not easy. It requires diligence and a considerable investment of time: to learn new computational tools, and to organize and document analyses as you go. Nevertheless, partially reproducible is better than not at all reproducible. Just try to make your next paper or project better organized than the last. There are many paths toward reproducible research, and you shouldn't try to change all aspects of your current practices all at once. Identify one weakness, adopt an improved approach, refine that a bit, and then move on to the next thing. I'll offer some suggestions for the initial steps to take towards making your work reproducible.

Authors who are presenting talks have a * after their name.

Back to the full JSM 2016 program

Copyright © American Statistical Association