Abstract Details
Activity Number:
|
410
|
Type:
|
Topic Contributed
|
Date/Time:
|
Tuesday, August 6, 2013 : 2:00 PM to 3:50 PM
|
Sponsor:
|
Biometrics Section
|
Abstract - #308680 |
Title:
|
Secondary Analysis of Longitudinal Trait in Genetic Association Studies
|
Author(s):
|
Huilin Li*+
|
Companies:
|
New York University
|
Keywords:
|
secondary analysis ;
longitudinal trait
|
Abstract:
|
Relating genome wide association study (GWAS) data to longitudinal phenotype data can provide special advantages, but also represents certain challenges. This is particularly challenging in secondary data analyses from case-control studies, as commonly found for GWAS investigations. Secondary data analyses using existing case-control GWAS data yield an effective and practical solution for genetic investigations of longitudinal traits that afford the opportunity to examine disease heterogeneity over time and early disease detection. In the paper, we developed the statistical inference approaches for secondary analysis of longitudinal traits in GWAS. We proposed to integrate the mixed-effects model, commonly used for longitudinal analysis, with weighted likelihood and retrospective likelihood methods, two theoretically justified secondary analysis methods for a single time trait, to develop robust and efficient approaches for secondary data analysis of longitudinal traits.
|
Authors who are presenting talks have a * after their name.
Back to the full JSM 2013 program
|
2013 JSM Online Program Home
For information, contact jsm@amstat.org or phone (888) 231-3473.
If you have questions about the Continuing Education program, please contact the Education Department.
The views expressed here are those of the individual authors and not necessarily those of the JSM sponsors, their officers, or their staff.
Copyright © American Statistical Association.