JSM 2013 Home
Online Program Home
My Program

Abstract Details

Activity Number: 195
Type: Contributed
Date/Time: Monday, August 5, 2013 : 10:30 AM to 12:20 PM
Sponsor: Section on Statistics and the Environment
Abstract - #307797
Title: Maximum Likelihood Estimation of Multivariate Normal Parameters in the Presence of Left-Censored and Missing Data: A Pseudo-Likelihood Approach
Author(s): Heather Hoffman*+ and Robert E. Johnson
Companies: George Washington University and Vanderbilt University Department of Biostatistics
Keywords: limit of detection ; multivariate normal distribution ; maximum likelihood estimation ; trace metal concentrations

Environmental data often include left-censored values less than some limit of detection (LOD). While simple imputation of LOD/2 is common, maximum likelihood methods accounting for censoring are preferred. Concentration levels of trace metal contaminants in water are typically modeled with (log)normal distributions. Maximum likelihood estimates (MLEs) of means and variances in univariate analyses are obtainable from standard software packages; however, multivariate analyses are more appropriate when multiple measurements come from the same entity. For example, the contamination level of freshwater streams is represented by a linear combination of dissolved trace metal amounts present within. In less polluted areas, these levels may fall below the LOD. We propose a pseudo-likelihood method utilizing pairs of variables that provides MLEs of mean and unstructured covariance parameters corresponding to a multivariate (log)normal distribution in the presence of left-censored and missing values. In conducting hypothesis tests and estimating functions of MLEs with standard errors, we apply this method to trace metal concentration data collected from freshwater streams across Virginia.

Authors who are presenting talks have a * after their name.

Back to the full JSM 2013 program

2013 JSM Online Program Home

For information, contact jsm@amstat.org or phone (888) 231-3473.

If you have questions about the Continuing Education program, please contact the Education Department.

The views expressed here are those of the individual authors and not necessarily those of the JSM sponsors, their officers, or their staff.

ASA Meetings Department  •  732 North Washington Street, Alexandria, VA 22314  •  (703) 684-1221  •  meetings@amstat.org
Copyright © American Statistical Association.