JSM 2012 Home

JSM 2012 Online Program

The views expressed here are those of the individual authors and not necessarily those of the JSM sponsors, their officers, or their staff.

Online Program Home

Abstract Details

Activity Number: 345
Type: Contributed
Date/Time: Tuesday, July 31, 2012 : 10:30 AM to 12:20 PM
Sponsor: IMS
Abstract - #306479
Title: Multiple-Index Approach to Multiple Autoregressive Time Series Model
Author(s): Jin-Hong Park*+
Companies: College of Charleston
Address: 351 Robert Scott Small Building, Charleston, SC, 29424, United States
Keywords: Multiple time series modeling ; Sufficient dimension reduction ; Time series central subspace ; Nonlinearity

Time series which have more than one time dependent variable require building an appropriate model in which the variables not only have relationships with each other, but also depend on previous values in time. Based on developments for a sufficient dimension reduction, we investigate a new class of multiple time series models without parametric assumptions. First, for the dependent and independent time series, we simply use a univariate time series central subspace to estimate the autoregressive lags of the series. Secondly, we extract the successive direction to estimate the time series central subspace for regressors which include past lags of dependent and independent series in a mutual information multiple-index time series. Lastly, we estimate a multiple time series model for the reduced directions. In this article, we propose a unified estimation method of minimal dimension using an Akaike information criterion, for situations in which the dimension for multiple regressors is unknown. We present an analysis using real data from the housing price index showing that our approach is an alternative for multiple time series modeling.

The address information is for the authors that have a + after their name.
Authors who are presenting talks have a * after their name.

Back to the full JSM 2012 program

2012 JSM Online Program Home

For information, contact jsm@amstat.org or phone (888) 231-3473.

If you have questions about the Continuing Education program, please contact the Education Department.