JSM 2012 Home

JSM 2012 Online Program

The views expressed here are those of the individual authors and not necessarily those of the JSM sponsors, their officers, or their staff.

Online Program Home

Abstract Details

Activity Number: 251
Type: Contributed
Date/Time: Monday, July 30, 2012 : 2:00 PM to 3:50 PM
Sponsor: Section on Statistics and the Environment
Abstract - #304705
Title: In-Season Probabilistic Crop Yield Forecasting: Integrating Agro-Climate, Remote Sensing, and Phenology Data
Author(s): Nathaniel Newlands*+ and David Sebastian Zamar
Companies: Agriculture and Agri-Food Canada and Agri-Environmental Services Branch, Agriculture and Agri-Food Canada
Address: Lethbridge Research Centre, Lethbridge, AB, T1J 4B1, Canada
Keywords: Agriculture ; Bayesian ; Climate ; Forecasting ; Risk ; Uncertainty

Statistical models help to provide decision-makers with an improved ability to spatially identify and assess, with enhanced foresight, potential risks and vulnerability of natural resources to climate variability and extremes. They also enable integration of diverse geospatial information together with its uncertainty for operational real-world application. We showcase a Bayesian method for sequential forecasting of the yield of major crops grown across the Canadian Prairies, Western Canada. This method incorporates robust least angle regression followed by robust cross validation for variable-selection, Markov chain Monte Carlo (MCMC) sampling for added spatial correlation support, and forms a joint probability distribution using the random forests algorithm for non-parametric modeling of future observable variables. We explore the relative improvement of candidate agro-climate, remote-sensing, and phenology indices on the overall accuracy of in-season forecasts (updated on a monthly basis) at two different spatial resolutions. Preliminary findings from cross-validation on spring wheat yield indicate a gain of 10% when involving net-difference vegetation index (NDVI) as a spatial index of crop yield potential and net model accuracy of 89%.

The address information is for the authors that have a + after their name.
Authors who are presenting talks have a * after their name.

Back to the full JSM 2012 program

2012 JSM Online Program Home

For information, contact jsm@amstat.org or phone (888) 231-3473.

If you have questions about the Continuing Education program, please contact the Education Department.