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Talk Outline

* Smartphone sensor data and Daynamica
* Smartphone data as a character sequence

* Sequential Activity Pattern Trees (SAPTrees)
* Defining sequence distances
* Multivariate distance matrix regression (MDMR)

e Conditional inference trees (CTrees)
* SAPTree Algorithm

* Application to smartphone data
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Daynamica Data
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Daynamica Data

Day StartTime EndTime Event

1 00:00:00 08:34:35 HOME

1 08:34:35 08:41:29 CAR

1 08:41:29 17:00:05 WORK

1 17:00:05 17:10:48 CAR

1 17:10:48 17:49:15 PERSONAL_BUSINESS
1 17:49:15 18:04:17 CAR

1 18:04:17 18:37:22 EAT_OUT
1 18:37:22 18:55:22 CAR

1 18:55:22 23:59:59 HOME

2 00:00:00 09:16:32 HOME

2 09:16:32 09:23:37 CAR

2 09:23:37 17:12:08 WORK

Goal: Formally characterize heterogeneity in user’s activity patterns



Daynamica Data
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Sequences from Daynamica Data

1:.00pm 1:30pm 2:00pm 2:30pm  3:00pm 3:30pm 4:00pm 4:30pm 5:00pm 5:30pm 6:00pm 6:30pm 7:00pm
| | | | | | | | | | | | |
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Sequences from Daynamica Data

1:00pm 1:30pm 2:00pm 2:30pm  3:00pm 3:30pm 4:00pm 4:30pm 5:00pm 5:30pm 6:00pm 6:30pm 7:00pm
| | | | | | | | | | | | |
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Sequences from Daynamica Data
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Sequence-Based Edit Distances

« Common in bioinformatics, computer science

* Minimum total cost of changing one sequence to
another via series of operations:
e Substitution
* Insertion
e Deletion

 Specified via a substitution cost matrix



Sequence-Based Edit Distances

a b 1 2 o)

a Yaa  Vab  Val Va2 Va [0
b Yoa  Yob Vb1 Vb2 Vb
I'= Ve Y16 Y11 Y12 Vie

21 Y2 Y2b 21 722 729

@ i Yoa Vb Vo1 Vo2 Voo _

* Cost matrix for sequences with states (a,b,1,2)
* ¢ is “null” state, responsible for indels



Sequence-Based Edit Distances

a b 1 2 o)

a Yaa  Vab  Val Va2 Va [0
b Voo Ybb Vo1 Vb2 Voo
I'=4 Ta  Y1b Y11 Y12 Ve

2 V2a  Y2b Y21 V22 V2o

¢ L VYoa Vb Vol Vo2 Vo

* Levenshtein edit distance: all diagonal entries O, all
other entries 1

e Distance between ‘b12a’ and ‘@22’ is 3:
1. Delete ‘@’ 2 ‘b12’
2. Substitute ‘1’ with 2’ = ‘b22’
3. Substitute ‘b’ with ‘@’ 2 ‘a22’



Pairwise Sequence Distance Matrix

0 dy; diz dyg dis dig
0 dyz dyy dys dag

0 d d d
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6x6 distance matrix summarizing dissimilarity between 6 sequences



Distance-Based Methods

* Heatmaps

* Dendrograms

* Hierarchical and other clustering methods
 Distance-based regression (distances as predictors)



Distance Matrix as Response

* Relate set of covariates were to sequence distance
matrix outcome

* A regression method with a distance matrix as the
“response variable”

e Multivariate Distance Matrix Regression (MDMR)



MDMR: Overview

Regress an n X n distance matrix D (outcome) on
covariates X

Similar to OLS, partition sum of squared distances (SSD)
instead

MDMR p-values assess strength of evidence for
“association” between covariate(s) and distance matrix

No measure of effect size

Interpretability of a “significant” association is lacking



Decision Tree



Conditional Inference Trees (CTrees)

Alternative to CART, primary differences:

* Variable selection and splitting distinct sequential processes
* Variable selection: which variable to split on
* Variable splitting: which value to split on

* Variable selection done in hypothesis testing framework

* Variable splitting determines optimal threshold for chosen variable



Sequence Activity Pattern Trees (SAPTrees)

SAPTrees use the CTree algorithm with:
* Sequences/resulting distance matrix as the outcomes

* MDMR used for the selection step and splitting step



Sequence Activity Pattern Trees (SAPTrees)

1. Compute distance matrix from sequences.

2. Variable selection step.

* Single covariate MDMR model for each candidate covariate
* Covariate w/ lowest p-value (also lower than threshold) chosen
* If none lower, terminate (controls Type | error)

3. Variable splitting step.

* MDMR at each split point used to determine optimal split value

4. Recursion.
* Repeat steps (2) and (3) recursively in each node until no more splits



SAPTree Application

Minneapolis-area study. ~250 users with multiple days of data.
SAPTree fit to 24-hour Wednesday sequence data for each individual
5-minute resolution: 288-character sequences

D calculated using Levenshtein distance

Covariates:
* Gender (male vs. female)
* Age (quantitative)
* Education (HS, associate/some college, bachelor, graduate)
* Race (white vs. other)
* Income (<25k, 25-50k, 50-75k, 75-100k, >100k)
* Parental Status (children vs. no children)

Multiplicity adjustment: Bonferroni

Nominal Type | error rate at each split point: a=0.05



SAPTree Visualization

Age

Pseudo-R2 = 0.069 p < 0.001
R2 =0.028

Tree Statistics

Distance Ratio = 1.101

Education
p = 0.007
R2 = 0.021

HS Some College

> 63
Age
p=0.035
R2=0112 Bachelor Graduate
< 38 > 38 \
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Probability

Functional Data Summaries

Probability of Work/Education Over Time by Terminal Node
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Node-specific probabilities of Work over time using function-on-scalar regression



Functional Data Summaries

Functional ANOVA by State
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Pointwise ANOVA to assess at what time points do terminal nodes significantly
differ with respect to a particular state



Potential SAPTree Uses

“Personalized medicine”: identifying activity-based
subgroups for targeted interventions

* |D’ing patients in exercise rehab programs who
differentially complete prescribed outpatient exercise
regimens

Healthcare cost savings

* SAPTree analysis of sensor data collected from mobile
care teams could be used to streamline their time use

Outside of healthcare

* Transportation planning: understanding how different
population subgroups utilize public transit network



Conclusions

* A method for characterizing covariate-based
heterogeneity in activity sequence patterns

* Interpretable results and visualizations

 Sensitive to variety of activity pattern differences
undetectable using traditional outcomes

* Many potential application areas

* Future Work:
 Effect of sampling resolution, distance metric choice
* Multiple sequences (e.g., adding accelerometer data)
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