Analysis of longitudinal studies with treatment by indication

Reagan Mozer Department of Mathematical Sciences Bentley University

Joint work with Mark E. Glickman Support from VA HSR&D IIR 15-115

Motivating application

- Study of veterans diagnosed with Pulmonary Hypertension (PH) from 2005-2012
- ▶ One treatment: *phosphodiesterase-5-inhibitors* (PDE5Is)
 - ▶ Useful for some rare forms of PH such as type 1 (arterial)
 - Contraindicated for patients with PH types 2 and 3
- Over 2,000 veterans inappropriately prescribed PDE5Is
- Objective: Measure causal effects of prescribing contraindicated PDE5Is for treatment of types 2 and 3 PH on time-to-event outcomes
- Several challenges in this setting
 - ▶ How should the control group be defined?
 - How can we conceptualize a time-to-event outcome for patients who were not prescribed a PDE5I?

Thought experiment

- Treatment is initiating PDE5I therapy; control is withholding PDE5Is.
- Patients are randomized only when their health status indicates that clinical intervention may be beneficial. This is called the "indication time".
- Outcomes are defined as time from indication to a specified adverse event (e.g., death).

For this idealized experiment

- ▶ Randomization → balance (in expectation) between treatment and control
- Can use standard inferential techniques to estimate causal effects.

Hypothetical Randomized Experiment

Unit	Treatment Indicator	Time of Indication	Pre-indication Covariates	Potential Outcomes	
i	$Z_{\mathfrak{i}} \in \{0,1\}$	$T_{i} \in \{1,2,\ldots\}$	Xi	$Y_{iT_i}(0) - T_i$	$Y_{iT_i}(1) - T_i$
1	1	t ₁	\mathbf{x}_1	?	$y_1(1) - t_1$
2	1	t_2	χ_2	?	$y_2(1) - t_2$
3	0	t ₃	\mathbf{x}_3	$y_3(0) - t_3$?
4	0	t_4	\mathbf{x}_4	$y_4(0) - t_4$?

In the real world

- Assignment is applied at time of indication, which is observed for treated units, but missing otherwise.
- ▶ All units who are not observed to receive treatment
 - ▶ may receive treatment after study period, or
 - ▶ may be controls with unobserved indication times.
- Controls may receive alternative therapy (which may not be identifiable from available data) or nothing at all.
- In addition to missing indication times, potential confounders pose a challenge for causal inference.

In the real world

Unit	Time of PDE5I	Covariates			Time of Adverse Event	
i	$T_{i} \in \{1,2,\ldots\}$	X _{i1}	X _{i2}		Yi	
1	t_1	χ_{11}	χ_{12}		y 1	
2	t ₂	\mathbf{x}_{21}	χ_{22}		Y2	
3	NA	χ_{31}	χ_{32}		¥3	
4	NA	χ_{41}	χ_{42}		¥4	

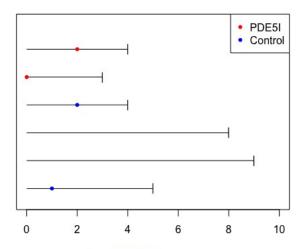
Observed Data

\downarrow

"Messy" Observational Study

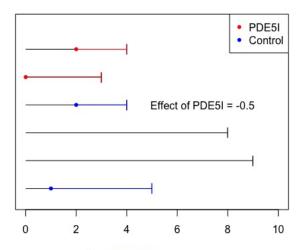
Unit	Treatment Indicator	Time of Indication	Pre-treatment Covariates	Potential Outcomes	
i	$Z_{\texttt{i}} \in \{0,1\}$	$T_{i} \in \{1,2,\ldots\}$	$X_{i} = (X_{i1},, X_{iT_{i}})$	$Y_i(0) - T_i$	$Y_i(1) - T_i$
1	1	t_1	x ₁	?	$y_1 - t_1$
2	1	t_2	\mathbf{x}_2	?	$y_2 - t_2$
3	??	??	??	y ₃ —??	?
4	??	??	??	y ₄ -??	?

The full picture - idealized experiment



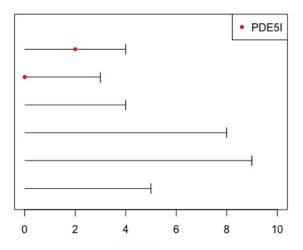
Time from Diagnosis to Adverse Event

The full picture - idealized experiment



Time from Diagnosis to Adverse Event

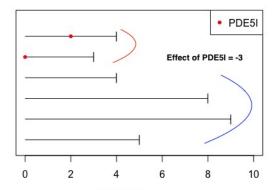
Real-world observed data



Time from Diagnosis to Adverse Event

Option 1: Naive comparisons

▶ Strategy: Compare times from *diagnosis* to adverse event for patients observed to receive a PDE5I during the study versus those not observed to receive a PDE5I?

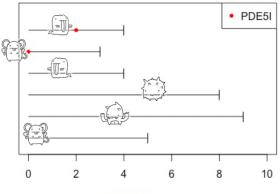


Time from Diagnosis to Adverse Event

▶ Not good: Wrong estimand, wrong control population

Option 2: Risk Set Matching (Li et al., 2001)

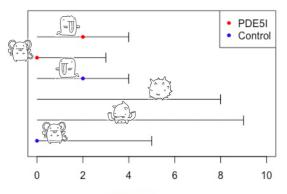
 For each treated unit, find not-yet-treated unit most similar before assignment



Time from Diagnosis to Adverse Event

Option 2: Risk Set Matching (Li et al., 2001)

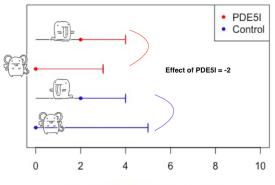
- For each treated unit, find not-yet-treated unit most similar before assignment
- ▶ Assume they would have been treated at the same time



Time from Diagnosis to Adverse Event

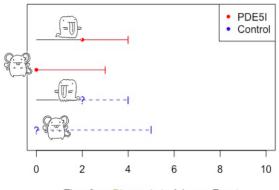
Option 2: Risk Set Matching (Li et al., 2001)

- For each treated unit, find not-yet-treated unit most similar before assignment
- ▶ Assume they would have been treated at the same time
- ▶ Compare outcomes for these units



Time from Diagnosis to Adverse Event

Option 2: Risk Set Matching (Li et al., 2001)▶ This is better, but...

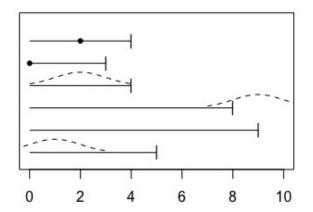


Time from Diagnosis to Adverse Event

► Uncertainty in assignment time → uncertainty in outcomes. We should account for this when estimating treatment effects!

Our approach

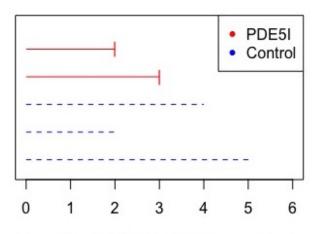
Step 1: Obtain the posterior distribution of missing indication times, ignoring outcome time data in the analysis.



Time from Diagnosis to Adverse Event

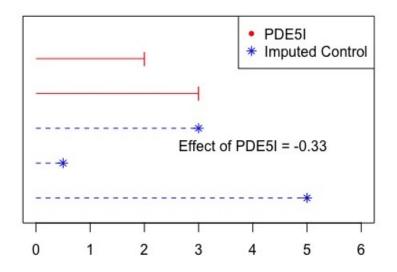
Our approach

Step 2: Summarize treatment effects based on the posterior distribution of indication times.

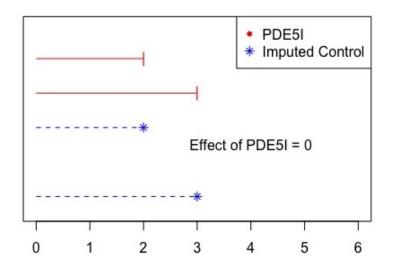


Time from Assignment to Adverse Event

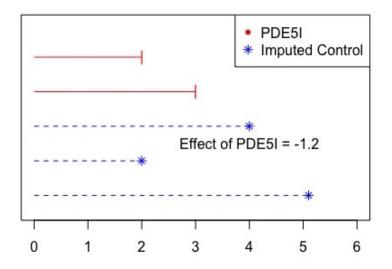
Posterior simulation



Posterior simulation



Posterior simulation



Quick recap of proposed framework

- ▶ Study period over discrete time points $0, \ldots, K$
- **Time of assignment**: indication time T_i
- ▶ Treatment: single medical intervention of interest, which is either *initiated* $(Z_i = 1)$ or *withheld* $(Z_i = 0)$ upon indication
- ▶ **Outcomes**: $Y_{iT_i}(Z_i)$ defined relative to indication time
- Estimands: $E[Y_{it}(1) Y_{it}(0)], 0 \le t \le K$
- ▶ Study population: subset of patients i with $T_i \in [0, K]$
- ▶ Patient sample: consists of
 - treated units $(T_i \in [0, K], Z_i = 1)$
 - "true" controls $(T_i \in [0, K], Z_i = 0)$
 - *ineligible* units $(T_i > K)$

Modeling approach

Model two underlying processes conditional on observed covariates:

- 1. Patients' health determines time of indication.
 - ▶ Patients enter the study at varying levels of overall health.
 - Patients become eligible for treatment only when some such medical intervention is deemed necessary.
- 2. Given time of indication, external factors can influence assignment to treatment versus control.
 - Clinicians' knowledge about effectiveness of therapies, adherence to protocol, etc., varies over time.

1. A model for indication time

Suppose patient health follows the discrete-time state space model for $t = 1, \dots, K$:

$$\begin{split} \Psi_{it} &= \theta_{it} + X_{it}\beta + \nu_{it}, \ \nu_{it} \sim^{iid} \mathcal{N}(0,1) \\ \theta_{it} &= \rho \theta_{it-1} + \varepsilon_{it}, \ \varepsilon_{it} \sim^{iid} \mathcal{N}(0,1) \end{split}$$

Indication times can be expressed as as the first-hitting time:

$$T_{i} = \inf\{t: \Psi_{it} > 0\}$$

with probabilities corresponding to the probit regression model

$$\mathsf{P}(\Psi_{\mathsf{it}} > 0 | \theta_{\mathsf{it}}, X_{\mathsf{it}}) = \Phi(\theta_{\mathsf{it}} + X_{\mathsf{it}}\beta).$$

2. A model for the assignment mechanism

For $t = 1, \ldots, K$, the probability of receiving treatment versus control upon indication is:

$$P(Z_i = 1 | T_i, D_i) = f(T_i, D_i, \delta)$$

where $0 < f(T_i, D_i, \delta) < 1$ is a function of exogenous factors D_i (e.g., calendar date) and parameters δ .

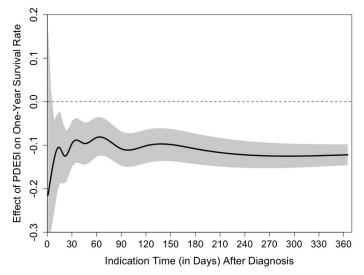
Some inferential procedure details

- Missing indication times (for untreated units) are inferred as part of MCMC posterior simulation.
- Autoregressive process on (θ₁,..., θ_K) is latent, but can be marginalized out using the Kalman Filter for computational efficiency.
- Summaries of aggregated average treatment effects can be obtained via appropriate averages over posterior samples.
- ▶ Can also report posterior summaries of
 - covariate effects on indication times, and
 - ▶ assignment probability to treatment over time.

Application to VA study

- <u>Medical intervention of interest</u>: Receipt of PDE5I prescription within one year of PH diagnosis.
- <u>Outcome of interest</u>: Survival one year after indication time.
- ▶ Final sample: 534 treated patients and 531 potential controls matched at PH diagnosis date selected from a pool of 167,000 untreated patients.
- Time-varying covariates included indicators for recent hospitalization, changes in medical history and presence of comoborbidities.

Application to VA study



Findings: the effect of initiating PDE5Is upon indication is a 10-11 percentage point decrease in survival rates.

Final thoughts

- Main innovation: Conceptualizing indication times for random assignment to control versus treatment.
- Still need to use standard methods for observational study analyses (e.g., bias reduction through matching, etc.)
- Framework permits flexible modeling choices for evolution in health status to trigger indication time, probability of control/treatment assignment, and so on.
- ▶ Please see full details in our paper.

Thanks for listening!

 $rmozer@bentley.edu\\glickman@fas.harvard.edu$

Paper: arxiv.org/abs/1909.06432 Slides: reaganmozer.com/ichps2020