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Estimating the average treatment effect (ATE)

Consider a trt Z = {0, 1}, a covariate-vector X , and an outcome Y .

Aim of most studies: estimate the effect of Z on Y .

• Rubin-Neyman’s potential outcome: each individual has (Y (0),Y (1))

• We observe Y = ZY (1) + (1− Z )Y (0)

• Objective: estimate µ = E [Y (1)− Y (0)].
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Confounding in non-randomized studies

Aim : estimate the effect of Z on Y , i.e., µ = E [Y (1)− Y (0)]

• RCT ensures covariate balance; but may still control for X

• For non-RCT: we need to adjust for confounding

• PS methods are increasingly used to evaluate such trt effects.
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Propensity score analysis (PSA): State of affairs

Source: PubMed (Dec 30, 2019)
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Propensity score analysis (PSA)

Propensity score = e(X ) = P(Z = 1|X ):

reflects the propensity to receive Z = {0, 1}, based on observed covariates

• (Y (1),Y (0)) � Z |e(X ) whenever (Y (1),Y (0)) � Z |X

• It is a balancing score: i.e. E [E (Y |Z = z , e(X ))] = E [Y (z)].
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Propensity score analysis (PSA)

All PS Methods take advantage of the balancing score property.

PSA is conducted in two steps

• Step I: estimate PS’s (logistic reg., GAM, GBM, BART, etc.)

• Step II: estimate trt effects of interest using a chosen PS method.

PS Methods: PS regression, matching, weighting, stratification.

(we can also combine with regression ⇔ double robustness)
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Algorithm to select the most appropriate PS method∗

PS methods: PS regression, matching, weighting, stratification.

∗ Statistical primer: propensity score matching and its alternatives [Benedetto et al., 2018]
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PS stratification: Modus operandi

PS stratification idea: Leverage PS balancing score property

• Partition the sample into PS strata Sk , k = 1, . . . ,K

• Calculate µ̂k =
N∑
i=1

I (eik ∈ Sk)

[
ZiYi

N1k
− (1− Zi )Yi

N0k

]

• Estimate µ as a weighted average µ̂ =
K∑

k=1

wk µ̂k

where Nzk = number of patients in trt Z = z , for z = 0, 1.
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PS stratification: Modus operandi

True weights are known; need to be specified using the data

Commonly-used weights

• Sample-fraction weights (SFW): ŵ
(sf )
k =

Nk

N
,

with Nk = N0k + N1k = number of patients in stratum Sk
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PS stratification: Granularities

• Usual assumptions are made: SUTVA, SITA, Positivity, Balance1

• PS estimation often ignored in inference; although:

1 Number and choice of strata boundaries influenced by PS model

2 Estimator depends on the PS estimation

• Rationale for weights choice?

.

1SUTVA: Stable unit trt value assumption; SITA: Strongly ignorable trt assignment [Rosenbaum and Rubin, 1983]
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PS stratification: Balance and weights

Justification for the SF weights ŵ
(sf )
k =

Nk

N

The choice for the weights wk is made assuming that

”. . . there is little variation within a stratum or block, and one

can analyze the data as if the propensity score is constant, and

thus as if the data within a block were generated by a completely

randomized experiment.” [Imbens and Wooldridge, 2009]
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PS stratification: Balance and weights

An almost block randomization is ideal, but untenable. [Morgan and Winship, 2014].

In reality, a more coarse stratification is used to avoid sparse strata.

Moreover, it’s been suggested the use

• outcome regression models to reduced residual bias

• alternative weights, including inverse-variance weights (IVW)
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PS weights: either . . . or

sample-fraction weights (SFW):

ŵ
(sf )
k =

Nk

N

or

inverse-variance weights (IVW):

ŵ
(iv)
k =

(
K∑

k=1

1/σ̂2
k

)−1 (
1/σ̂2

k

)
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PS weights: one vs. the other?

Rudolph et al.1 compared

ŵ
(sf )
k =

Nk

N
vs. ŵ

(iv)
k =

(
K∑

k=1

1/σ̂2
k

)−1 (
1/σ̂2

k

)
and showed that,

• under assumptions of positivity and constant trt effect,

• both methods perform well;

• IVW performs slightly better.

• However, under trt heterogeneity, SFW outperforms IVW

1Optimally combining propensity score subclasses [Rudolph et al., 2016]
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The inverse-variance weights

Why the inverse-variance weights?

Optimal: Minimize variance, AMSE; maximize power, signal-to-noise ratio.

Rationale for IVW, under constant treatment effect:

• convey the info underlying trt effect in each stratum;

• strata with smaller variance must weigh more (precision)

• IVW better borrow strength across strata to estimate trt effect
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Inverse-variance weights: special cases (Part I)

Consider w
(iv)
k =

(
K∑

k=1

1/σ2
k

)−1(
1/σ2

k

)
with σ2

k =
N0kσ

2
1k + N1kσ

2
0k

N0kN1k

• If N1kσ
2
0k + N0kσ

2
1k = aNk , (a ∈ R+), we have σ2

k =
aNk

N0kN1k
and

w
(iv)
k =

(
K∑

k=1

N0kN1k

Nk

)−1
N0kN1k

Nk

i.e., w
(iv)
k = the Mantel-Haenszel weights (MHW)
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Inverse-variance weights: special cases (Part II)

Let pk =
N1k

Nk
and consider ŵ

(mh)
k =

(
K∑

k=1

N0kN1k

Nk

)−1
N0kN1k

Nk

• We can write ŵ
(mh)
k =

(
K∑

k=1

Nkp1k(1− p1k)

)−1

Nkp1k(1− p1k)

• ŵ
(mh)
k is equal to ŵ

(mh)
k =

Nk

N
, if p1k(1− p1k) = b, b ∈ R+

i.e., Mantel-Haenszel weights simplify to the sample-fraction weights
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SFW and MHW are special cases for IVW

1 MHW: whenever N1kσ
2
0k + N0kσ

2
1k = aNk

2 SFW: if N1kσ
2
0k + N0kσ

2
1k = aNk and p1k(1− p1k) = b

Questions

• Are the SFW assumptions plausible?

• Why were Rudolf et al.’s results conflicting? (constant vs. heterogeneous trt)

• Why IVW not adopted throughout, like in Meta-analysis methods?
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PS inverse-variance weights: the issues

Big picture

Homogeneity, independence, consistency and unbiasedness

Issues may occur when there is

• (strong) heterogeneity of trt across strata

• small strata or sparse strata

• correlation since E

(
K∑

k=1

ŵk µ̂k

)
=

K∑
k=1

[E (ŵk)E (µ̂k) + Cov(ŵk , µ̂k)]

• ŵk is a consistent, but not an unbiased estimator of wk
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PS inverse-variance weights: the truth is . . .

1 µ̂k � σ̂2
k if and only if µ̂k ∼ N(µk , σ

2
k).

2 In general, E
(

1
σ̂2
k

)
≥ 1

σ2
k

(by Jensen’s inequality)

3 with ŵk , Var(ATE ) is understimated, even if µ̂k ∼ N(µk , σ
2
k).

4 If µ̂k is not normal, we don’t always know what we’re getting
(µ̂k and σ̂2

k are not independent; the weights and the variance Var(ATE) are underestimated)

� What should we do?
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Calibrate the weights . . .

Calibrate the weights and re-evaluate the variance Var(ATE)

When µ̂k ∼ N(µk , σ
2
k), we have E

[
ck
σ̂2
k

]
=

1

σ2
k

where ck =
Nk − 3

(Nk − 1)

• Hence, we calibrate the weights, ATE estimate and variance∗ as:

1 µ̂∗ate =
K∑

k=1

ŵ∗k µ̂k with ŵ∗k =

[
K∑

k=1

ck
σ̂2
k

]−1

ck
σ̂2
k

2 Var(µ̂∗ate) =

[
K∑

k=1

ck
σ̂2
k

]−1 [
1 + 4

K∑
k=1

w∗k(1− w∗k)

Nk − 1

]

?Variance of a weighted mean [Meier, 1953]
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. . . and call a wild bootstrap to the rescue

When µ̂k is not normal or we just want to generalize,

use a wild bootstrap1 to estimate the weights

� Obtain B bootstrap replicates by perturbing the original sample

(a.k.a perturbation-resampling method)

1 A simple resampling method by perturbing the minimand [Jin et al., 2001]Roland A. Matsouaka ICHPS 2020 21 / 37



Wild bootstrap algorithm

� Estimate µ̂∗bk and σ̂∗2
bk via perturbation of the original sample

• For each b = 1, . . . ,B, generate vi ∼ exp(1)

1 perturb Y in the original sample

2 estimate the PS using a v -weighted logistic model

3 split the bootstrap sample into strata

4 calculate v-weighted µ̂∗
bk , σ̂∗

bk , and w∗
bk ∝

ck
σ̂∗2
bk

• use as weights w∗
k the mean of w∗

bk , b = 1, . . . ,B

1 A simple resampling method by perturbing the minimand [Jin et al., 2001]

Roland A. Matsouaka ICHPS 2020 22 / 37



Example 1: The Lindner data set (1997)

Dataset from Lindner Center, Christ Hospital, Cincinnati, OH1

• 996 patients who received Percutaneous Coronary Intervention (PCI)

• Outcomes: lifepres (dead or alive) and cardbill (6-month cost in $)

• Trt: PCI vs. PCI+abciximab (298 patients in PCI group)

• 26 patients died (15 in the PCI group)

• 7 covariates including gender, height, stent, diabetic, acute MI.

1Come with R packages such as USPS, PSAgraphics, twang
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The Lindner data set: Outcome distribution (Cardbill)
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The Lindner data set: Propensity scores

20

0

20

40

0.4 0.6 0.8 1.0
Propensity score

co
un

t

control

treatment

Roland A. Matsouaka ICHPS 2020 25 / 37



The Lindner data set: cardbill with 5 strata
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The Lindner data set: cardbill with 5 strata (log scale)
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The Lindner data set: cardbill with 10 strata
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The Lindner data set: cardbill with 10 strata (log scale)
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Example 2: North Carolina birth weights (1988–2002)

Data from Odum Institute, UNC, Chapel Hill

• 157,988 first-time black mothers

• Outcome: infants birth weights (in grams)

• Trt: smoking vs. non-smoking during pregnancy

• 1150 mothers (∼ 7.3%) were smokers

• ∼ 30 covariates available
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NC Birth weights: Outcome distribution
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NC Birth weights: Propensity scores
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NC birth weights: 4 strata
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NC birth weights: 10 strata
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Summary

In propensity score stratification, the choice of weights is crucial

1 sample-fraction weights rely on stringent assumptions

2 inverse-variance weights are optimal; however

• their implementation can go wrong (small strata, correlation mean-variance)

• traditional bootstrap won’t help

3 use the wild boostrap based on perturbation-resampling method
(calibrate the weights and re-adjust Var(ATE))
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Thank You

Roland A. Matsouaka

R roland.matsouaka@duke.edu 7 @matsouaka
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