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Population-level effects of individual-level interventions
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I Under no interference, population-level effect is the individualistic
effect times the number of people receiving the intervention

I For interventions, like vaccines, the population-level effect is a
complex function of individualistic effects
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Overview

I Basic structure and assumptions of transmission models to
evaluate population-level effects of vaccines and similar
interventions

I Meaning of traditional estimands of individualistic causal effects

under interference

I Parameters in transmission models and clinical effects of
interventions: do they mean the same thing, and what happens if

they do not?
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Compartmental dynamic transmission models
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Transmission parameter µ =

contact rate ⇥ Pr(transmission per contact)

Pr(transmission per contact) =

(susceptibility of uninfected) ⇥ (infectiousness of infected)
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Population-level effects of a hypothetical vaccine
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assuming constant contact rate.

µ00 : transmission parameter in the absence of vaccination
��� : change in susceptibility due to vaccination
��� : change in infectiousness among vaccinated individuals, who became
infected
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How do we translate estimates of vaccine efficacy from

clinical trials to parameters in transmission models?



Ideal experiment: Randomized challenge study

X	=	0

X	=	1

The contrast between the infection risk among treated and untreated
would be a measure of the Susceptibility Effect
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Framework for the empirical evaluation of vaccine efficacy

Halloran and Struchiner. Study Designs for Dependent Happenings. Epidemiology, 1991.
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Formal definition of the Direct Effect

Define the individual average potential outcome of j under treatment
X = x measured at time t as:

Y j(t, x) =
X

x�j2Xn�1

Yj(t, x,x�j) Pr(X�j = x�j |Xj = x),

where x�j is a vector of treatment assignments to all cluster members except j,
n is a cluster size, and Xn = {0, 1}n is the set of all binary vectors of n elements.

The individual average direct effect

DEj(t) = Y j(t, 1)� Y j(t, 0)

is the difference in individual average potential outcomes when xj = 1
and when xj = 0.

Hudgens & Halloran. Toward Causal Inference With Interference. JASA, 2008.
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The Direct Effect in practice
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Subjects may be infected outside of the cluster or by their cluster members

Y indicates occurrence of infection before time t

DE = RD = E[Y (t) | x = 1]� E[Y (t) | x = 0]

or

DE = RR =
E[Y (t) | x = 1]

E[Y (t) | x = 0]
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The model of hazard under contagion

The hazard of infection to individual j at time t is:

�j(t, xj ,x�j) = exp(xj��� + ⌘j)
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⌘j : untreated susceptibility of j

���: susceptibility effect of x

⇠k: untreated infectiousness of k

���: infectiousness effect of x

↵(t): exogenous force of infection

yk(t): outcome of k at time t

n: cluster size

tk: time of infection of k
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The Susceptibility Effect and the Direct Effect

The Susceptibility Effect (SE) is:

HR =
�j(t | xj = 1, einfect)

�j(t | xj = 0, einfect)
= exp(�),

at any time t under the constant force of infection einfect > 0.

The Direct Effect (DE) is:

RR =
Pr[Yj(T ) = 1 | xj = 1]

Pr[Yj(T ) = 1 | xj = 0]
,

where T is an observation time.

What happens if we use the DE (RR) as an approximation to

the SE (HR)?
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Common randomized study designs in clustered population

I Simple Bernoulli randomization: every subject is assigned to
treatment independently with a given probability

I Block randomization (completely randomized experiment): exactly m

out of n subjects are selected randomly and assigned to treatment

I Cluster randomization: the entire clusters are randomized to receive
treatment with some probability (everyone in a given cluster receives
the same treatment)

All three randomization schemes guarantee balance in personal

baseline characteristics of study participants - covariates that may
influence susceptibility
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Analytic results under the null of no susceptibility effect

Under the null of no susceptibility effect
(� = 0� = 0� = 0):

I DE = 0 under Bernoulli randomization
( )

I Under block randomization ( ),
the direction of DE is opposite that of
infectiousness effect ���

I Under cluster randomization ( ),
the direction of DE is the same as that
of infectiousness effect ���

−2 −1 0 1 2

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

Bernoulli
block
cluster

infectiousness effect γ

po
pu

la
tio

n 
av

er
ag

e 
D

E
Eck DJ, Morozova O, Crawford FW. Randomization for the susceptibility effect of an infectious disease
intervention. arXiv :1808.05593. 2018.
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Analytic results under block randomization in clusters of size two

In clusters of size two, when exactly one
subject is treated:

I When the infectiousness effect ��� is in
the same direction, but stronger than
the susceptibility effect ���, the DE is

guaranteed to point in the direction

opposite that of SE for long enough
observation time

I Under this study design, the DE is

always a biased approximation to
the SE, even when they both point in
the same direction
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Morozova O, Cohen T, Crawford FW. Risk ratios for contagious outcomes. JRSI. 2018.
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Hypothetical example: vaccination

Assume a hypothetical closed population of 100,000 individuals with one infected
person at time zero and no recovery (SI-type process).

Assume that a protective vaccine is given to 20% of individuals: the true effect on
susceptibility e

� = 0.74, and the true effect on infectiousness e
� = 0.37.

Assume that the DE was used as a measure of the SE, and that it was evaluated
in a block randomized experiment (DE = 1.05). Assume that the value of the
infectiousness effect was estimated correctly.

Projected intervention effectiveness at the population level:

# of infections averted infections cost ICER

do nothing 35,596 - - -
true effect 11,098 24,498 USD 3M USD 122

estimated effect 14,225 21,371 USD 3M USD 140
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Final thoughts

The direct effect is a valid statistical estimand, which may provide
useful information about the mechanism of treatment spillover under
some designs.

However, this quantity does not always have an individualistic causal

interpretation, and may be misleading if incorrectly interpreted as an
analogue of the susceptibility effect and used to parameterize a

transmission model for the evaluation of population-level effects.
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