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Balance Assessments

In both randomized controlled trials and observational studies,

unconfounded analysis depends on the treatment and control groups having the

equivalent distributions on background variables x.

In randomized trials, this condition is only guaranteed in expectation. In

observational studies, researchers attempt to enforce this condition with

matching or weighting.

In either case, assessing the similarity of treatment and control groups

(“balance”) is an important component of study design.
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Notation

• There are n units (people, clinics, schools)

• The p variables are collected in x

• Each unit is assigned to treatment Zi = 1 or control Zi = 0.

• It will be useful to define

Ji =
Zi − P (Zi = 1)

P (Zi = 1)P (Zi = 0)
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Mahalanobis Distance

Hansen and Bowers (2008) and Morgan and Rubin (2012) assess balance with a

Mahalanobis distance, a normalized difference of group means D:

M = D′Cov (D)−D = J′xCov (x′J)
−
x′J

A common special case is complete random assignment with n1 assigned to

treatment and n0 = n − n1 to control:

M =
n1n0
n

(X̄1 − X̄0)
′ S2(x)−1(X̄1 − X̄0)

where X1 and X0 are group means and S2(x) is the sample covariance matrix.
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Interpretation via PCA

Since we are scaling by the inverse covariance matrix there is a convenient

representation of the Mahalanobis distance using the principal components of

x:

M = J′x(x′ E (JJ′) x)−x′J = J′uu′ E (JJ′)
−
uu′J,

where u is from the SVD of x = udv′.

Going forward, we’ll think of p as the rank of u′ E (JJ′)u.

As an added bonus, we now have a natural way of ordering the covariates.
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Inference when n > p

In an observational trial M is a useful test statistic for H0 : π = π0 (Hansen

and Bowers, 2008).

In randomized trials, M can be used to select particular Z that have

controlled imbalance (Morgan and Rubin, 2012).

With the number of covariates p being fixed and n tending to infinity,

M
D→ χ2(p)

(Hansen and Bowers, 2008; Li et al., 2018)
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Example: Homicide rates and public infrastructure

Cerdá et al. (2012) reported an natural experiment in Medelĺın, Colombia:

• Intervention: Public works transportation program.

• Units: 48 neighborhoods (25 with stations, 23 without) matched in pairs

and two triples.

• Covariates: Survey responses, governmental data, mix of types (48 with

interactions)

• Balance Assessment: Validating matching strategy created comparable

pairs and triples.
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• Intervention: Public works transportation program.

• Units: 48 neighborhoods (25 with stations, 23 without) matched in pairs

and two triples.

• Covariates: Survey responses, governmental data, mix of types (48 with

interactions)

• Balance Assessment: Validating matching strategy created comparable

pairs and triples.

7



Example: Homicide rates and public infrastructure
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Cerdá et al. (2012) Empirical Mahalanobis Distance
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Figure 1: Mahalanobis distance distribution for 48 matched neighborhoods in reported

in Cerdá et al. (2012)
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Reduced Rank Mahalanobis Distance

A degenerate M provides no information on suitability of observational

studies or equivalence at baseline in randomize trials.

As the previous slides demonstrated, selecting k < n principal components

provides a non-degenerate distribution.

We define reduced rank Mahalanobis distance as:

Mk = J′uku
′
k E (JJ

′)
−
uku

′
kJ

where uk collects the first k columns of u.
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Picking k

Typical rules for picking k (e.g., including 80% of variance in x) do not take into

account the role of assignment mechanism Z (Chang, 1983).

A natural analog in this case is maximizing the (null) variance of Mk .
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Figure 2: Variance of Mk for matched neighborhoods in Medelĺın
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Satterthwaite Approximation

Rather than approximate the distribution of Mk as χ2(k), we could use a

correction that matches both mean and variance to a scaled χ2:

Mk ≈ aχ2(v) ⇒ v =
2k2

Var (Mk)
, a =

k

v

• Provides approximation to tail probabilities P (Mk ≥ mk)

• Provides approximate cutoff for selecting“rerandomization”RCT designs

• Alternatively, use Monte Carlo sampling from Z
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Corrected Medelĺın Distribution
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m11 = 24.5; P (M11 ≥ m11): 0.01088 (1st order approx.), 0.00048 (2nd order

approx.), 0.001 (empirical, 5k samples)

12



Summary and Future Directions

• Balance assessments compare treated and control groups for similar

distributions.

• The Mahalanobis distance statistic is useful when n ≫ p, but becomes

degenerate when p ≈ n.

• Reduced rank Mahalanobis distance guarantees non-degenerate

distribution.

• Satterthwaite χ2 approximation superior and relatively simple.

• In-progress: extend RItools package for R, formalize justification for

variance maximization, implications for design (both observational and

RCTs)
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Thank You!

13


