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FDA’s primary tool to 
ensure safety and efficacy 
of proposed modifications
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PROBLEM SETUP

▸ Automatic Algorithm 
Change Protocol (aACP): 
an ACP executed without 
human intervention 

▸ ML-based SAMD is a black-
box prediction model �.f
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PROBLEM SETUP

▸ At time points t = 1,2,… 

▸ Collect new batch of 
monitoring data 

▸ Company proposes new 
candidate algorithm �  

▸ Index of the most 
recently approved 
algorithm is �

̂ft

̂At

MONITORING DATA 
UP TO TIME T

POOL OF CANDIDATE 
ALGORITHMS
̂fj j = 1,...,t

APPROVAL INDICES
̂Aj j = 1,...,t − 1

LATEST 
APPROVAL 

INDEX
̂At
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GOAL

Design automatic Algorithm Change Protocols that approve 
good modifications quickly and control the rate at which bad 
modifications are approved.
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GOAL

1) Define what an acceptable modification is. 

2) Define a statistical framework for evaluating automatic 
Algorithm Change Protocols. 

3)  Design automatic Algorithm Change Protocols that 
approve good modifications quickly and control the rate at 
which bad modifications are approved.
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▸ Evaluate ML-based SaMD according to metrics 

�  mk : ℱ ↦ ℝ k = 1,..,K

REGULATING ML

EVALUATION METRICS
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ACCEPTABLE MODIFICATIONS
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Non-inferiority 
(NI) margin



Definition: A modification from 
algorithm � to � is acceptable for 
non-inferiority margin �,  � , 
if it is: 

▸ Non-inferior with respect to 
all metrics 
�  

▸ Superior in at least one metric 
�  

f f′�
ϵ f →ϵ f′�

mk( f ) − ϵ ≤ mk( f′�) ∀k = 1,...,K

mk( f ) ≤ mk( f′ �) ∃k ∈ {1,...,K}

REGULATING ML

ACCEPTABLE MODIFICATIONS AND ACCEPTABILITY GRAPHS

Se
ns

iti
vi

ty
0.5

0.625

0.75

0.875

1

Specificity

0.5 0.6 0.7 0.8 0.9 1

Region of 
Acceptable 

Modifications



REGULATING ML

EVALUATING AUTOMATIC ACPS

▸ Definition: The expected bad approval count at time T 

�  BAC(T ) = E [
T

∑
t=1

1 {Approved unacceptable modification at time t}]
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EVALUATING AUTOMATIC ACPS

▸ Definition: The expected bad approval count at time T 

�  BAC(T ) = E [
T

∑
t=1

1 {Approved unacceptable modification at time t}]
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EVALUATING AUTOMATIC ACPS

▸ Definition: The expected bad approval count at time T 

�  BAC(T ) = E [
T

∑
t=1

1 {∃t′� = 1,...,t − 1 s.t.  ̂f ̂At′�
↛ϵ

̂f ̂At}]
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EVALUATING AUTOMATIC ACPS

▸ Definition: The expected bad approval count at time T 

�  

▸ Definition: The expected bad approval ratio at time T 

�

BAC(T ) = E [
T

∑
t=1

1 {∃t′� = 1,...,t − 1 s.t.  ̂f ̂At′�
↛ϵ

̂f ̂At}]

BAR(T ) = E
∑T

t=1 1 {∃t′� = 1,...,t − 1 s.t.  ̂f ̂At′�
↛ϵ

̂f ̂At}
1 + ∑T

t=1 1 {B̂t ≠ B̂t−1}

“FWER”

“FDR”
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AUTOMATIC ALGORITHM CHANGE PROTOCOLS
▸ Without error rate control: 

▸ aACP-Blind: Approve everything 

▸ aACP-Reset: Compare to the latest approval with fixed p-value 
threshold 

▸ With error rate control: 

▸ aACP-BAC: Controls expected Bad Approval Count using alpha-
spending, group-sequential, and gate-keeping methods 

▸ aACP-BABR: Controls expected Bad Approval and Benchmark Ratios 
using alpha-investing, group-sequential, and gate-keeping methods 

▸ aACP-Fixed: Do not approve anything



aACP-Reset (no error control)

REGULATING ML

Select fixed level � . At time t = 1,2,… 

▸ For each candidate modification � , test if it is 
acceptable to the currently approved model �   
(� ) using prospectively-collected 
monitoring data. 

▸ Approve the latest modification with p-value smaller 
than  �

α

̂ft′�
̂f ̂At

H0 : ̂f ̂At
↛ϵ

̂ft′ �

α



aACP-BAC (controls BAC)

REGULATING ML

At time t = 1,2,… 

▸ For each candidate modification � , test the null 
hypotheses following a gate-keeping procedure at alpha 
levels chosen using group-sequential and alpha-
spending procedures: 

▸ �   

▸ �  

▸ … 

▸ �  

‣ Approve the latest modification that rejects all hypotheses

̂ft′�

H0
1 : ̂f ̂A1

↛ϵ
̂ft′�

H0
2 : ̂f ̂A2

↛ϵ
̂ft′�

H0
t : ̂f ̂At

↛ϵ
̂ft′�

Gate-keeping
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AUTOMATIC ALGORITHM CHANGE PROTOCOLS
▸ Without error rate control: 

▸ aACP-Blind: Approve everything 

▸ aACP-Reset: Compare to the latest approval with fixed p-value 
threshold 

▸ With error rate control: 

▸ aACP-BAC: Controls expected Bad Approval Count using alpha-
spending, group-sequential, and gate-keeping methods 

▸ aACP-BABR: Controls expected Bad Approval and Benchmark Ratios 
using alpha-investing, group-sequential, and gate-keeping methods 

▸ aACP-Fixed: Do not approve anything
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SIMULATIONS

▸ Setup 

▸ Monitoring data is IID at each time point and across time 
points 

▸ Binary prediction problem 

▸ Desired properties 

1. Low rate of bad approvals 

2. High rate of good approvals
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RESULT: AACP-BAC AND -BABR PROTECT AGAINST BIO-CREEP
▸ Proposed modifications deteriorate over time

aACP-Reset

aACP-BABR
aACP-Fixed

aACP-BAC
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RESULT: MODELS IMPROVE AT SIMILAR RATES USING 
AACP-BAC, AACP-BABR, AND AACP-RESET
▸ Train new models using the accumulating monitoring data

aACP-Fixed

aACP-BAC
aACP-Reset

aACP-BABR

aACP-Blind
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