Simultaneous Clustering and Ranking of County-Level Health Outcomes

Ron Gangnon \& Cora Allen-Coleman
University of Wisconsin-Madison

7 January 2020

Background

- Ranking of counties (or other geopolitical regions) based on health indices is a common inferential goal in public health.
- Bayes (and empirical Bayes) methods provide (joint) posterior distributions for county health indices and corresponding county ranks.
- Inferences (point and distributional) regarding ranks should be guided by appropriate loss function/inferential goal.
■ Illustrative example: \% of live births with low birthweight $(<2,500 \mathrm{~g})$ in Arizona counties, 2017.

Arizona \% Low Birth Weight

Inference Regarding Ranks

■ Optimal point estimates for ranks minimize squared error loss on the proportion (\% LBW) scale.

- Posterior distributions for county-specific ranks can either be displayed using dot plot (with dot size proportional to posterior) or summarized with highest posterior density (HPD) intervals.

Arizona \% Low Birth Weight in (Optimal) Rank Order

Posterior Distribution of Ranks

Concerns

■ High degree of uncertainty regarding most ranks with the exception of large counties at the extremes of the distribution or outliers.

- High variability in one county necessarily influences uncertainty of ranks for all other counties.
■ Hard to identify meaningful distinctions between ranks given the high level of noise.
■ Potential (partial) solution based on discussions with County Health Rankings staff: Clustering

Nonparametric Mixture Model

■ Likelihood: $y_{i} \sim \operatorname{Binomial}\left(n_{i}, p_{i}\right), i=1,2, \ldots, N$
■ Nonparametric prior: $\operatorname{Pr}\left(p_{i}=\theta_{j}\right)=\gamma_{j}, j=1,2, \ldots, m \leq N$
■ Maximum likelihood estimates for number of mixture components m, support points $\theta_{1}, \theta_{2}, \ldots, \theta_{m}$ and (prior) probability $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{m}$ from EM algorithm.

- Empirical Bayes posterior distributions for county-specific probability $p_{1}, p_{2}, \ldots, p_{N}$ (exact formula) and order statistics $p_{(1)} \leq p_{(2)} \leq \ldots \leq p_{(N)}($ simulated $)$.

Posterior Distribution for \% Low Birth Weight

Posterior Distribution for Order Statistics

Cluster and Rank Assignments

- Assign cluster to order statistic/rank position using squared error loss on proportion (\% LBW) scale.
- Unconstrained minimization.
- Compares $p_{(i)}$ with θ_{j}.
- Assign county to rank using integrated squared error loss on proportion (\% LBW) scale.
- Constrained minimization to avoid duplicate ranks using Hungarian algorithm.
- Compares p_{i} with $p_{(j)}$.
- Assign cluster to county based on assigned rank position.

■ Similar in spirit to triple-goal estimates from Shen and Louis (1998).

Optimal Cluster Assignments for Order Statistics/Rank Positions

Optimal Rank Assignments for Counties

Simultaneous Clustering and Ranking of Counties

Final Display Emphasizing Cluster Assignments

Final Display Emphasizing Credible Intervals

Map with Cluster Assignments

Discussion

- Ranking (with uncertainty) corresponds to multiple inferential goals.
■ High degree of uncertainty regarding most ranks leads to challenges in interpretation and messaging, even for very sophisticated end users.
■ Use of (discrete) mixture models allows for simultaneous clustering and ranking of county health indices.
- Adding clustering to optimal ranking greatly facilitates interpretation and messaging, particularly for traditional target audiences for rankings.

